matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraG-Module
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - G-Module
G-Module < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

G-Module: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:30 Fr 09.12.2011
Autor: lukas10000

Aufgabe
[mm] A^G [/mm] := [mm] {x\in A | xg=x \forall g\in G } [/mm]
Für A,B G-Moduln und [mm] Hom_Z(A,B) [/mm] G-Modul ist dann [mm] (Hom_Z(A,B))^G [/mm] = [mm] Hom_{ZG}(A,B) [/mm] sowie für Z trivialer G-Modul [mm] Hom_G(Z,A) [/mm] = [mm] (Hom_Z(A,B))^G [/mm] = [mm] A^G. [/mm]

Ich bräuchte hilfe diese Gleichheiten zu erkennen.
Beim ersten sei [mm] \phi \in (Hom_Z(A,B))^G, [/mm] dann weiß ich [mm] \phi^g [/mm] = [mm] \phi [/mm]
Wende ich dies auf ag an: [mm] \phi^g [/mm] (ag) = [mm] \phi [/mm] (a)g = [mm] \phi [/mm] (a)

Warum folgt dadurch die Gleichheit? Warum wende ich überhaupt, dass ganze auf das Element ag an und nicht einfach nur auf a? [mm] \phi [/mm] geht doch nur von A nach B. Und wir haben doch ZG und nicht G als äußere Verknüpfung, wieso zeigen wir es nicht mit einem Element aus ZG?

Für die zweite Aussage wäre es gut, wenn ich die erste einmal verstanden habe.

        
Bezug
G-Module: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Fr 09.12.2011
Autor: felixf

Moin!

> [mm]A^G[/mm] := [mm]{x\in A | xg=x \forall g\in G }[/mm]
>  Für A,B G-Moduln
> und [mm]Hom_Z(A,B)[/mm] G-Modul ist dann [mm](Hom_Z(A,B))^G[/mm] =
> [mm]Hom_{ZG}(A,B)[/mm] sowie für Z trivialer G-Modul [mm]Hom_G(Z,A)[/mm] =
> [mm](Hom_Z(A,B))^G[/mm] = [mm]A^G.[/mm]

Was soll $Z$ sein? Etwa [mm] $\IZ$? [/mm] Und ist $ZG$ der Gruppenring [mm] $\IZ[G]$? [/mm] Und inwiefern haben $A$ und $B$ eine [mm] $\IZ$-Modul-Struktur? [/mm] Sind es vielleicht abelsche Gruppen?

Und was ist ein "Z trivialer G-Modul"?

LG Felix


Bezug
                
Bezug
G-Module: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Fr 09.12.2011
Autor: lukas10000

ja jedes Z sollte [mm] \IZ [/mm] sein, genauso wie mit dem Gruppenring.
Wenn A und B eine [mm] \IZ [/mm] -Modul-Struktur haben, sind sie doch abelsche Gruppen.

[mm] "\IZ [/mm] trivialer G-Modul", dass wusste ich auch nicht genau, wurde so formuliert. Ich würde es deuten als dass G trivial auf [mm] \IZ [/mm] operiert. also zg = z, für [mm] Z\in \IZ, g\in [/mm] G

Bezug
        
Bezug
G-Module: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 Sa 10.12.2011
Autor: hippias

Da haette ich auch noch ein paar Fragen:
> [mm]A^G[/mm] := [mm]{x\in A | xg=x \forall g\in G }[/mm]
>  Für A,B G-Moduln
> und [mm]Hom_Z(A,B)[/mm] G-Modul ist dann [mm](Hom_Z(A,B))^G[/mm] =
> [mm]Hom_{ZG}(A,B)[/mm]

Wie ist denn die Operation von $G$ auf [mm] $Hom_Z(A,B)$ [/mm] erklaert?

> sowie für Z trivialer G-Modul [mm]Hom_G(Z,A)[/mm] =
> [mm](Hom_Z(A,B))^G[/mm] = [mm]A^G.[/mm]

Hier sind doch wohl allenfalls Isomorphien gemeint? Im uebrigen halte ich die Behauptung fuer falsch: [mm] $Hom_G(Z,A)[/mm] [/mm] = [mm] A^G$ [/mm] leuchtet mir ein, aber [mm] $(Hom_Z(A,B))^G$ [/mm] bringe ich nicht unter: $G$ multiplikative Gruppe von [mm] $\IQ$, [/mm] $A= [mm] \IQ^{n}$, [/mm] $B:= [mm] \IQ^{m}$; [/mm] dann ist [mm] $(Hom_Z(A,B))^G= [/mm] Hom(A,B)$, aber [mm] $A^{G}= [/mm] 0$.

>  Ich bräuchte hilfe diese Gleichheiten zu erkennen.
>  Beim ersten sei [mm]\phi \in (Hom_Z(A,B))^G,[/mm] dann weiß ich
> [mm]\phi^g[/mm] = [mm]\phi[/mm]
>  Wende ich dies auf ag an: [mm]\phi^g[/mm] (ag) = [mm]\phi[/mm] (a)g = [mm]\phi[/mm]
> (a)
>  
> Warum folgt dadurch die Gleichheit? Warum wende ich
> überhaupt, dass ganze auf das Element ag an und nicht
> einfach nur auf a? [mm]\phi[/mm] geht doch nur von A nach B. Und wir
> haben doch ZG und nicht G als äußere Verknüpfung, wieso
> zeigen wir es nicht mit einem Element aus ZG?
>  
> Für die zweite Aussage wäre es gut, wenn ich die erste
> einmal verstanden habe.


Bezug
                
Bezug
G-Module: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 10.12.2011
Autor: lukas10000

[]Hier auf Seite 95 unten ist es aufgeführt was ich meine. Lustigerweise steht bei der ersten gleichheit/isomorphie G und nicht ZG.

hm habe lustigerweise was anderes ähnliches gefunden: []hier seite 161 lemma 6.1.1

ich sehe es immernoch nicht :/

Bezug
        
Bezug
G-Module: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 So 11.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]