matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGaloisgr., semidirektes Prod.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Galoisgr., semidirektes Prod.
Galoisgr., semidirektes Prod. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgr., semidirektes Prod.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:55 Mo 21.03.2011
Autor: Lippel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei p prim. Bestimme die Galoisgruppe des Polynoms $f=X^6-p \in \IQ[X]$



Hallo,

bei der Aufgabe haben sich einige Fragen ergeben. Darüber hinaus wüsste ich gerne, ob mein Vorgehen richtig ist. Ich habe versucht alles ganz kleinschrittig zu begründen.

Sei $\zeta$ 6-te Einheitswurzel und $a=\sqrt[6]{p}$. Dann sind die Nullstellen von $f\:$ in $\IC$ gegeben durch: $a, \zeta a, \ldots, \zeta^5 a$.
Bezeichne $L\:$ den Zerfällungskörper von $f\:$ über $\IQ$. Die Erweiterung $L/\IQ$ ist dann natürlich normal und auch separabel, da $char\: \IQ = 0$, also $L/\IQ$ galoissch.

Nach Eisenstein ist $f\:$ irreduzibel in $\IQ[X] \Rightarrow$ da $a\:$ Nullstelle von $f\:$ ist: $f = min_{\IQ}(a) \Rightarrow [\IQ(a):\IQ]=6$.
Es gilt außerdem: $[\IQ(\zeta):\IQ] = \varphi(6) = 2 \Rightarrow [\IQ(\zeta,a):\IQ(a)] \leq 2$. Damit folgt, da $\zeta$ als echt komlpexe Zahl nicht in $\IQ(a) \subset \IR$ liegt: $[\IQ(\zeta,a):\IQ(a)] = 2$ und somit (wegen $\IQ(\zeta,a)=L$): $[L:\IQ] = [L:\IQ(a)][\IQ(a):\IQ] = 2 \cdot 6 = 12$.

Daraus ergibt sich dann auch: $[L:\IQ(\zeta)] = 6$. Da außerdem $\IQ(\zeta)/\IQ$ bekanntermaßen galoissch ist, erhalten wir folgende Inklusionskette von Körpern, wobei alle Erweiterungen galoissch sind: $\IQ \subset \IQ(\zeta) \subset L$.

Für die Struktur der Galoisgruppen gilt: $Gal(\IQ(\zeta)/\IQ) \cong (\IZ/6\IZ)^{\times} \cong \IZ/2\IZ$. Die Gruppe wird erzeugt von $\sigma: \zeta \mapsto \zeta^5$ (der komplexen Konjugation).
In $Gal(L/\IQ(\zeta))$ hat der Automorphismus $\tau: a \mapsto a\zeta$ Ordnung 6 und erzeugt somit bereits die ganze Gruppe. Es gilt daher: $Gal(L/\IQ(\zeta)) \cong \IZ/6\IZ$

$\sigma \in Gal(L/\IQ(\zeta))$ ist insbesondere auch ein $\IQ$-Automorphismus von $L\:$. Damit ist die Inklusion $i: Gal(L/\IQ(\zeta)) \hookrightarrow Gal(L/\IQ)$ ein injektiver Gruppenhomomorphismus.

Für $\sigma \in Gal(L/K)$ ist die Einschränkung $\sigma|_{\IQ(\zeta)}$ stets ein $\IQ$-Automorphismus von $\IQ(\zeta)$, denn, da $\IQ(\zeta)/\IQ$ normal ist, beschränkt sich auch das Bild der Einschränkung auf $\IQ(\zeta)$.
Andererseits lässt sich jeder $\IQ$-Automorphismus $\sigma$ von $\IQ(\zeta)$ zu einem $\IQ$-Automorphismus von $L\:$ fortsetzen. Dieser liegt dann in $Gal(L/\IQ)$. Also ist die Abbildung $\pi: Gal(L/K) \twoheadrightarrow Gal(\IQ(\zeta)/\IQ)$ surjektiv.

Es gilt weiterhin für einen $\IQ$-Automorphisums von $L\:$: $\sigma \in im\:i \gdw \sigma|_{\IQ(\zeta)} = id \gdw \sigma \in ker\: \pi$. Also gilt $im\: i = ker\: \pi$.

Damit ist die Sequenz $1 \to Gal(L/\IQ(\zeta)) \xrightarrow{i} Gal(L/\IQ) \xrightarrow{\pi} Gal(\IQ(\zeta)/\IQ) \to 1$ exakt.

Wir untersuchen nun, ob diese Sequenz spaltet. Wir suchen eine Abbildung $s: Gal(\IQ(\zeta)/\IQ) \to Gal(L/\IQ)$, sodass $\pi \circ s = id$. $Gal(\IQ(\zeta)/\IQ)$ wird erzeugt von $\sigma: \zeta \mapsto \zeta^5$, was der auf $\IQ(\zeta)$ eingeschränkten komplexen Konjugation entspricht. Bezeichen $\overline{\sigma}$ die komplexe Konjugation in $L\:$, dann gilt auch $\overline{\sigma} \in Gal(L/\IQ)$. Wir setzten $s: \sigma \mapsto \overline{\sigma}$. Damit gilt natürlich: $\pi \circ s = id$. Die Sequenz spaltet also, und es gilt somit $Gal(L/\IQ) \cong Gal(L/\IQ(\zeta)) \rtimes_\phi Gal(\IQ(\zeta)/\IQ)$.
Dabei ist $\phi$ ein Homomorphismus $Gal(\IQ(\zeta)/\IQ) \to Aut(Gal(L/\IQ(\zeta)), \sigma \mapsto \gamma_\sigma$ mit $i(\gamma_\sigma(\tau)) = s(\sigma)i(\tau)s(\sigma)^{-1}$.
Es ist klar, dass $\phi(id) = ((a \mapsto a\zeta) \mapsto (a \mapsto a\zeta))$, d.h. alle Galoisautomorphismen werden wieder auf sich selbst abgebildet.
Sei $\sigma \in Gal(\IQ(\zeta)/\IQ)$ die komplexe Konjugation, $\tau \in Gal(L/\IQ(\zeta)): a \mapsto a\zeta$, dann ist $\gamma_\sigma(\tau) = s(\sigma)\tau s(\sigma) = \overline{\sigma}\tau\overline{\sigma} = (a \mapsto a\zeta^5)$ mit der komplexen Konjugation $\overline{\sigma}$ auf ganz $L\:$.

Nun wissen wir aber bereits, dass ja $Gal(\IQ(\zeta)/\IQ) \cong \IZ/2\IZ$ und $Gal(L/\IQ(\zeta)) \cong \IZ/6\IZ$. Damit ist $Gal(L/\IQ) \cong \IZ/6\IZ \rtimes_{\tilde{\phi}} \IZ/2\IZ$. Wir wollen nun noch verstehen, was die Abbildung $\tilde{\phi}}$ hier tut: $\tilde{\phi}: \IZ/2\IZ \to Aut(\IZ/6\IZ), x \mapsto \gamma_x$ mit $\gamma_0(a) = id$ und $\gamma_1(a): 1 \mapsto 5$, da 5 dies die einzige Möglichkeit ist eine Abbildung der Ordnung 2 zu erhalten, es gilt nämlich: $\gamma_1(a):5 \mapsto 25=1$.

So, stimmt das alles erstmal soweit? Kann man für die Gruppe noch eine konkretere From angeben?

Dann hätte ich noch einige Fragen: Woher weiß ich eigentlich, dass ich zum Berechnen einer Galoisgruppe eine solche Gruppenerweiterung betrachten muss? Ich brauche ja einen Zwischenkörper, der galoissch über dem Grundkörper ist. Aber ich weiß trotzdem nicht, wie ich das sehen kann.

Muss ich zum semidirekten Produkt immer die Abbildung $\phi: H \to Aut(N)$ mit angeben, damit klar ist, wie die Struktur der Gruppe ist?

Kennt jemand noch ein anderes Beispiel für eine Erweiterung, deren Galoisgruppe ein semidirektes Produkt ist? Dann könnte ich das zur Übung mal durchrechnen.

Vielen Dank für eure Hilfe!

LG Lippel

        
Bezug
Galoisgr., semidirektes Prod.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Mo 21.03.2011
Autor: Tagesschau

Hallo Lippel,
das stimmt soweit.
Die Gruppe heißt [mm] D_{6} [/mm] und ist die Drehgruppe mit 12 Elementen. Du kannst sie Dir auch nun hinschreiben, indem Du ihre Wirkung auf den Einheitswurzeln und den Nullstellen hinschreibst.

Du weißt, wie der Zerfällungskörper aussieht und daß nach Hauptsatz Galoistheorie Normalteiler mit Galoisschen Zwischenerweiterungen übereinstimmen. Gruppe modulo Normalteiler kann hingeschrieben werden: das ist Deine Einheitswurzelerweiterung. Der Normalteiler wird auch schnell klar, da die obere Erweiterung leicht zu beschreiben ist: sie ist abelsch und von Ordnung 6. Das andere muß dann irgendwie in eine Sequenz zu packen sein, wobei wir bei einer Gruppenerweiterung sind.

Die Abbildung, die zum semidirekten Produkt gehört, ist anzugeben - im trivialen Fall ist es dann sogar das direkte Produkt. Also: hinschreiben (sichtbar an der Wirkung der Gruppe!)

Grüße,
Tagesschau.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]