matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGauß Approximation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Gauß Approximation
Gauß Approximation < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauß Approximation: Stetigkeitskorrektur
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 18.12.2013
Autor: andreas01

Aufgabe
<br>


<br>
Liebe Kollegen,

Ich betrachte eine binomialverteilte Zufallsgröße X.
Ich habe ein großes n(Stichprobenumfang) und eine Standardabweichung > 3,p sei auch gegeben; d.h ich kann nunmehr gaußapproximieren:

Ich betrachte folgende [mm] Faelle:(\mu [/mm] = Erwartungswert)

a) P( [mm] x_1 [/mm] <= X <= [mm] x_2): [/mm]  mit [mm] x_1 [/mm] < [mm] \mu [/mm] < [mm] x_2: [/mm]
   hier muß ich bekanntlich bei [mm] x_1 [/mm] - 1/2 addieren und
   bei [mm] x_2 [/mm] + 1/2 addieren und wie gewohnt weiterrechnen
   d.h. z  = (x - [mm] \mu)/ \delta [/mm] verwenden mit korrigierten x - Werten

b) P( X <= [mm] x_1): [/mm] mit [mm] x_1 [/mm] > [mm] \mu: [/mm]
   hier muß ich bekanntlich bei [mm] x_1 [/mm] + 1/2 addieren und  
   wie gewohnt weiterrechnen ....

c) P( X >= [mm] x_1): [/mm] mit [mm] x_1 [/mm] > [mm] \mu: [/mm]
   hier muß ich bekanntlich bei [mm] x_1 [/mm] - 1/2 addieren und wie
   gewohnt weiterrechnen  ...

Nun meine Frage, wie rechne ich bei:

d) P( X <= [mm] x_1): [/mm] mit [mm] x_1 [/mm] < [mm] \mu: [/mm] ?
e) P( X >= [mm] x_1): [/mm] mit [mm] x_1 [/mm] < [mm] \mu: [/mm] ?

Vielen Dank!
Andreas




        
Bezug
Gauß Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Mi 18.12.2013
Autor: luis52


>  
> Ich betrachte folgende [mm]Faelle:(\mu[/mm] = Erwartungswert)
>  
> a) P( [mm]x_1[/mm] <= X <= [mm]x_2):[/mm]  mit [mm]x_1[/mm] < [mm]\mu[/mm] < [mm]x_2:[/mm]
>     hier muß ich bekanntlich bei [mm]x_1[/mm] - 1/2 addieren und
>     bei [mm]x_2[/mm] + 1/2 addieren und wie gewohnt weiterrechnen
>     d.h. z  = (x - [mm]\mu)/ \delta[/mm] verwenden mit korrigierten
> x - Werten
>  
> b) P( X <= [mm]x_1):[/mm] mit [mm]x_1[/mm] > [mm]\mu:[/mm]
>     hier muß ich bekanntlich bei [mm]x_1[/mm] + 1/2 addieren und  
> wie gewohnt weiterrechnen ....
>
> c) P( X >= [mm]x_1):[/mm] mit [mm]x_1[/mm] > [mm]\mu:[/mm]
>     hier muß ich bekanntlich bei [mm]x_1[/mm] - 1/2 addieren und
> wie
>     gewohnt weiterrechnen  ...

Moin, heisst wie gewohnt [mm] $1-P(X\le x_1-1/2)$? [/mm] Das waere okay.

>
> Nun meine Frage, wie rechne ich bei:
>  
> d) P( X <= [mm]x_1):[/mm] mit [mm]x_1[/mm] < [mm]\mu:[/mm] ?

Wie bei b)

>  e) P( X >= [mm]x_1):[/mm] mit [mm]x_1[/mm] < [mm]\mu:[/mm] ?

Wie bei c)



Bezug
                
Bezug
Gauß Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mi 18.12.2013
Autor: andreas01

Aufgabe
<br>
Hallo Luis!
Moin, heisst wie gewohnt [$ [mm] 1-P(X\le x_1-1/2) [/mm] $] ? Das waere okay.
Bezieht sich Deine Fragestellung auf c)??
Dann müßte doch + 1/2 stehen??

Andreas


<br>

Bezug
                        
Bezug
Gauß Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 18.12.2013
Autor: luis52


>  Dann müßte doch + 1/2 stehen??
>  

Angenommen, $x$ ist eine der Zahlen [mm] $0,1,2,\dots,n$. [/mm] Dann ist

[mm] $P(X\ge x)=1-P(X                   

Bezug
                                
Bezug
Gauß Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Do 19.12.2013
Autor: andreas01

Aufgabe
<br>

<br>

Lieber Luis,
Danke, die lezte Formel bringt Klarheit.

Ich fasse zusammen:
Bei "höchstens" immer + 1/2: egal ob x < oder > Erwartungswert
Bei "mindestens" immer 1 - P(X <= x -1 + 1/2):
egal ob x < oder > Erwartungswert

Ich glaube, das müßte stimmen.

liebe Grüße,
Andreas


Bezug
                                        
Bezug
Gauß Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Fr 20.12.2013
Autor: luis52


> Ich fasse zusammen:
>  Bei "höchstens" immer + 1/2: egal ob x < oder >

> Erwartungswert
>  Bei "mindestens" immer 1 - P(X <= x -1 + 1/2):
>  egal ob x < oder > Erwartungswert

>  
> Ich glaube, das müßte stimmen.


[ok]

Bezug
                
Bezug
Gauß Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mi 18.12.2013
Autor: andreas01

Aufgabe
<br>


<br>
Hallo Luis!

ad c) Moin, heisst wie gewohnt 1-P(X <= [mm] x_1 [/mm] + 1/2)? Das waere okay. Da müsste doch +! stehen??

habe Formel lesbar geschrieben, was vorher nicht der Fall
war.
liebe Grüße aus Tirol
was heißt eigentlich MOIN ?

Bezug
                        
Bezug
Gauß Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mi 18.12.2013
Autor: luis52


>
>  liebe Grüße aus Tirol
>  was heißt eigentlich MOIN ?

Das ist ostfriesisch und bedeutet

Guten Morgen (Tag, Abend), meine Damen und Herren.

oder fuer dich vielleicht verstaendlicher

Grüezi!   ;-)


Bezug
                                
Bezug
Gauß Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Fr 07.02.2014
Autor: andreas01

Ich hatte vergessen, mich zu bedanken, was ich nun
nachholen möchte.

liebe Grüße,
Andreas

Bezug
                                        
Bezug
Gauß Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Fr 07.02.2014
Autor: luis52

Klasse Andreas, gerne.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]