matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesGaussklammerrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Gaussklammerrechnung
Gaussklammerrechnung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaussklammerrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 29.03.2008
Autor: Pegasus78

Aufgabe
    5. Eine Stadtverwaltung muss sich zwischen zwei Tarifen für Parkgebühren
    entscheiden.
    Tarif 1: Je 20 angefangene Minuten Parkzeit kosten 0,30
    Tarif 2: Je 30 angefangene Minuten Parkzeit kosten 0,50
a) Stellen Sie die Funktion, die zu den beiden Tarifen gehören, bis zu einer
Parkzeit von 3 Stunden graphisch dar.
b) Wie müssen Sie den Graphen der Gaußklammerfunktion durch Dehnung, Spiegelung bzw. Verschiebungen verändern, damit die Graphen von Teilaufgabe a) entstehen?
Entwickeln Sie gleichzeitig schrittweise die Funktionsterme, die diesen Veränderungen entsprechen.
c) Für welche Parkzeiten (bis zu 3 Stunden) ist der Tarif 2 für die Stadtverwaltung günstiger?

Hallo zusammen,

Kann mir bitte jemand bei dem Aufgabenteil c) helfen?
Teil a) habe ich erledigt
Teil b) habe ich wie folgt gelöst:
Tarif 1:  f = (x) = [x]            
Für die Spiegelung an der x–Achse wird daraus: [mm] f_{x-Achse} [/mm] (x)= [-x]
Dann erfolgt die Spielung an der y–Achse: [mm] f_{y-Achse}(x) [/mm] = - [-x]  
Für die Streckung forme ich um: [mm] f_{x-Achse}(x)=-[\bruch{1}{30}x] [/mm]
Und für die Streckung an der y-Achse: [mm] f_{x-Achse}(x)=(-[-\bruch{1}{30}x]*20 [/mm]
Oder:  f(x) = [mm] ([-\bruch{1}{30}x])*-20 [/mm]

Tarif 2:  f = (x) = [x]
Spiegelung x-Achse: [mm] f_{x-Achse}(x)=[-x] [/mm]  
Spiegelung y-Achse: [mm] f_{y-Achse}(x)=-[-x] [/mm]
Streckung  x-Achse: [mm] f_{x-Achse}(x)=-[\bruch{1}{50}x] [/mm]
Streckung y-Achse: [mm] f_{y-Achse}(x)= -[\bruch{1}{50}x]*30 [/mm]
Oder:  [mm] f(x)=([-\bruch{1}{50}x])*-30 [/mm]

Bei der Aufgabe c stehe ich nun vollkommen auf dem Schlauch.
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gaussklammerrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Sa 29.03.2008
Autor: abakus


>    5. Eine Stadtverwaltung muss sich zwischen zwei Tarifen
> für Parkgebühren
> entscheiden.
>      Tarif 1: Je 20 angefangene Minuten Parkzeit kosten
> 0,30
>      Tarif 2: Je 30 angefangene Minuten Parkzeit kosten
> 0,50
>  a) Stellen Sie die Funktion, die zu den beiden Tarifen
> gehören, bis zu einer
>  Parkzeit von 3 Stunden graphisch dar.
>  b) Wie müssen Sie den Graphen der Gaußklammerfunktion
> durch Dehnung, Spiegelung bzw. Verschiebungen verändern,
> damit die Graphen von Teilaufgabe a) entstehen?
>  Entwickeln Sie gleichzeitig schrittweise die
> Funktionsterme, die diesen Veränderungen entsprechen.
>  c) Für welche Parkzeiten (bis zu 3 Stunden) ist der Tarif
> 2 für die Stadtverwaltung günstiger?
>  Hallo zusammen,
>  
> Kann mir bitte jemand bei dem Aufgabenteil c) helfen?

Die Hilfe hast du erst mal im Teil b) nötig, den du nicht verstanden hast.
Die Achsenspiegelungen sind völlig unnötig.
Die Gaußklammerfunktion y= [x] hat
von 0 bis an 1 heran den Wert 0
von 1 bis an 2 heran den Wert 1
von 2 bis an 3 heran den Wert 2 usw.

Du brauchst "breitere" Stufen (im Tarif 1 von 0 bis 20, 20 bis 40 ...).
Das schaffst du mit [x/20]. Allerdings würden die Werte von Stufe zu Stufe um 1 steigen, sie sollen aber nur um 0,30 steigen. Deshalb: 0,30*[x/20].
Letzter zu behebender Fehler: 0,30*[x/20] hat von 0 bis 20 den Wert 0,00, von 20 bis 40 den Wert 0,30 usw. Mann muss aber von Anfang an schon mindestens 0,30€ bezahlen, sämliche Preise wären also um 0,30 zu klein.
Deshalb: y=0,30*[x/20] + 0,30.
Tarif 2 geht gänz ähnlich, nur eben mit anderen Werten.
Wenn du beide Tarife grafisch dargestellt hast, kannst du im Koordinatensystem die Lösung für c) ablesen.
Viele Grüße
Abakus

>  Teil a) habe ich erledigt
>  Teil b) habe ich wie folgt gelöst:
>  Tarif 1:  f = (x) = [x]            
> Für die Spiegelung an der x–Achse wird daraus: [mm]f_{x-Achse}[/mm]
> (x)= [-x]
>  Dann erfolgt die Spielung an der y–Achse: [mm]f_{y-Achse}(x)[/mm] =
> - [-x]  
> Für die Streckung forme ich um:
> [mm]f_{x-Achse}(x)=-[\bruch{1}{30}x][/mm]
> Und für die Streckung an der y-Achse:
> [mm]f_{x-Achse}(x)=(-[-\bruch{1}{30}x]*20[/mm]
> Oder:  f(x) = [mm]([-\bruch{1}{30}x])*-20[/mm]
>  
> Tarif 2:  f = (x) = [x]
>  Spiegelung x-Achse: [mm]f_{x-Achse}(x)=[-x][/mm]  
> Spiegelung y-Achse: [mm]f_{y-Achse}(x)=-[-x][/mm]
> Streckung  x-Achse: [mm]f_{x-Achse}(x)=-[\bruch{1}{50}x][/mm]
> Streckung y-Achse: [mm]f_{y-Achse}(x)= -[\bruch{1}{50}x]*30[/mm]
> Oder:  [mm]f(x)=([-\bruch{1}{50}x])*-30[/mm]
>  
> Bei der Aufgabe c stehe ich nun vollkommen auf dem
> Schlauch.
>  Vielen Dank
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]