matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenGaußsche Zahlenebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "komplexe Zahlen" - Gaußsche Zahlenebene
Gaußsche Zahlenebene < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Zahlenebene: Bedingung wie funktioniert es
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 08.02.2010
Autor: haxenpeter

Aufgabe
Wo liegen alle komplexen zahlen (z=x+yj) in der gaußschen zahlenebene? Bedingung [mm] 4\le x^2+y^2\le9 [/mm]

Wie funktioniert das, wie weiß ich von wo bis wo ich den kreis malen muss?

        
Bezug
Gaußsche Zahlenebene: zwei Kreise
Status: (Antwort) fertig Status 
Datum: 20:13 Mo 08.02.2010
Autor: Loddar

Hallo haxenpeter!


Betrachte separat:
$$4 \ [mm] \le [/mm] \ [mm] x^2+y^2$$ [/mm]
[mm] $$x^2+y^2 [/mm] \ [mm] \le [/mm] \ 9$$
Zeichne diese beiden Kreise und überleg, welcher Bereich beide Bedingungen erfüllt.


Gruß
Loddar


Bezug
                
Bezug
Gaußsche Zahlenebene: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:25 Mo 08.02.2010
Autor: haxenpeter

das man da kreise malen muss versteh ich ja, aber ich hab das noch nie gemacht. also eine erklärung für jemanden der das nicht kennt wäre super

Bezug
                        
Bezug
Gaußsche Zahlenebene: was ist das Problem?
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 08.02.2010
Autor: Loddar

Hallo haxenpeter!


Wenn Dir klar ist, dass es sich hier um Kreise handelt, musst Du doch auch die allgemeine Kreisgleichung
[mm] $$\left(x-x_M\right)^2+\left(y-y_M\right)^2 [/mm] \ = \ [mm] r^2$$ [/mm]
kennen.

Übertrage dies auf die o.g. Ungleichungen. Ansonsten bitte Dein Problem / Deine Unklarheit konkret formulieren.


Gruß
Loddar


Bezug
                                
Bezug
Gaußsche Zahlenebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 08.02.2010
Autor: haxenpeter

die lösung kenn ich ja, es liegt zwischen 2 und 3 aber ich versteh nicht wie man darauf kommt!

ich versteh nich was ich da machen muss um dahin zu kommen.und mit den lösungsansätzen komm ich auch nicht weiter

Bezug
                                        
Bezug
Gaußsche Zahlenebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mo 08.02.2010
Autor: steppenhahn

Hallo!

Es gilt: [mm] $\IC \cong \IR^{2}$, [/mm] das ist die "Rechtfertigung" dafür, dass man komplexe Zahlen in der Gaußschen Zahlenebene, also im "normalen Graphen" [mm] (=\IR^{2}) [/mm] darstellen kann.

Wie macht man das?:

Eine komplexe Zahl der Form $z = x+i*y$, wie bei dir gegeben, kannst du deswegen mit dem Punkt (x,y) in der Gaußschen Zahlenebene identifizieren.

Du hast nun die Ungleichung

[mm] 4\le x^{2} [/mm] + [mm] y^{2} \le [/mm] 9

gegeben. Es geht also um komplexe Zahlen $z = x+i*y$ bzw. um Punkte (x,y) in der Gaußschen Zahlenebene, die obige Ungleichung erfüllen.
Die eine Ungleichung kannst du in die beiden Teilungleichungen aufteilen:

(I) $4 [mm] \le x^{2} [/mm] + [mm] y^{2}$ [/mm]

(II) [mm] $x^{2} [/mm] + [mm] y^{2} \le [/mm] 9$

Beide Ungleichungen beschreiben jeweils Kreisungleichungen:

(I) [mm] $(x-0)^{2} [/mm] + [mm] (y-0)^{2}\ge 2^{2}$ [/mm]

= Menge aller Punkte auf dem Rand und außerhalb des Kreises um (0,0) mit Radius 2.

(II) [mm] $(x-0)^{2} [/mm] + [mm] (y-0)^{2} \le 3^{2}$ [/mm]

= Menge aller Punkte im Inneren und auf dem Rand des Kreises um (0,0) mit Radius 3.

Nun braucht man die Kreise nur noch einzuzeichnen.

Wo liegt also das Problem?

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]