matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebr. rat. Fkt. untersuchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Gebr. rat. Fkt. untersuchen
Gebr. rat. Fkt. untersuchen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebr. rat. Fkt. untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mi 23.01.2008
Autor: die_anke

Aufgabe
für jedes t>0 ist eine Fkt [mm] f_{t} [/mm] gegeben durch:  [mm] f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}} [/mm] ; x [mm] \in [/mm] e [mm] \IR [/mm]  
ihr schaubild sei [mm] K_{t} [/mm]

aufg b): die Kurve [mm] K_{1}, [/mm] die positive x-Achse und die Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen Näherungswert [mm] \overline{A} [/mm] für A erhält man, indem man [mm] K_{1} [/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel soll symmetrisch zur y-Achse sein und die Kurve [mm] K_{1} [/mm] im Ursprung und im Pkt. [mm] P_{1} [/mm] (1/1) verühren.
Bestimmen sie die Gleichung dieser Parabel.
Berechnen Sie [mm] \overline{A}. [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo erst einmal..
Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen. Bin sonst eigentlich ein mittelguter MatheSchüler aber bei dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe das hat auch alles mit der Formeleingabe geklappt.
Also mein größtes Problem ist, dass ich nicht weiß was mit der Parabel 4. Ordnung gemeint ist [mm] x^{4} [/mm] ? aber dann wäre die aufgabenstellung, berechne die gleichung der parabel ja schon gelöst... Wie kann ich auf die richtige gleichung kommen?? Habe ja nur den y-Achenabschnitt.

Naja, also wie gesagt ich hoffe mir kann jm helfen... Wenn ich die Aufgabe geschafft habe dann folgen dann auch ncoh die anderen Aufgabenstellungen.. ;)

Liebe Grüße

        
Bezug
Gebr. rat. Fkt. untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:28 Do 24.01.2008
Autor: Somebody


> für jedes t>0 ist eine Fkt [mm]f_{t}[/mm] gegeben durch:  
> [mm]f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}}[/mm] ; x [mm]\in[/mm] e [mm]\IR[/mm]  
> ihr schaubild sei [mm]K_{t}[/mm]
>  
> aufg b): die Kurve [mm]K_{1},[/mm] die positive x-Achse und die
> Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen
> Näherungswert [mm]\overline{A}[/mm] für A erhält man, indem man
> [mm]K_{1}[/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel
> soll symmetrisch zur y-Achse sein und die Kurve [mm]K_{1}[/mm] im
> Ursprung und im Pkt. [mm]P_{1}[/mm] (1/1) verühren.
> Bestimmen sie die Gleichung dieser Parabel.
>  Berechnen Sie [mm]\overline{A}.[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo erst einmal..
> Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen.
> Bin sonst eigentlich ein mittelguter MatheSchüler aber bei
> dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe
> das hat auch alles mit der Formeleingabe geklappt.
> Also mein größtes Problem ist, dass ich nicht weiß was mit
> der Parabel 4. Ordnung gemeint ist [mm]x^{4}[/mm] ?

Der Graph einer Polynomfunktion (aka. ganzrationale Funktion) 4. Grades. Also etwas von der Form $p(x):= [mm] ax^4+bx^3+cx^2+dx+e$, [/mm] mit [mm] $a\neq [/mm] 0$. Da aber zudem diese Parabel symmetrisch zur $y$-Achse sein soll, muss es sich um eine "gerade Funktion" handeln, es muss also $p(-x)=p(x)$ gelten, für alle $x$. Dies bedeutet, dass im Funktionsterm von $p(x)$ nur gerade Potenzen von $x$ auftreten dürfen. Also kann man gleich den einfacheren Ansatz $p(x) := [mm] ax^4+bx^2+c$ [/mm] machen. $a,b,c$ sind dann aus den weiteren Bedingungen, denen $p(x)$ genügen muss, zu bestimmen. Du benötigst also zur Bestimmung der verbleibenden drei Formvariablen $a,b,c$ auch drei Gleichungen, um eine eindeutige Lösung für $p(x)$ zu erhalten. Dies sind: (1) $p(x)$ muss [mm] $K_1$ [/mm] im Ursprung berühren. (2) $p(x)$ muss [mm] $K_1$ [/mm] im Punkt $P(1/1)$ berühren.
Dies sind, auf den ersten Blick beurteilt, scheinbar nur zwei Gleichungen, aber "berühren" bedeutet eben, dass in diesen beiden Punkten auch die Steigungen der beiden Kurven (also die Ableitungen der zugehörigen Funktionen) gleich sind. (Somit besteht allenfalls die Gefahr, dass wir zuviele Gleichungen, nämlich vier, erhalten und es vielleicht gar keine Lösung gibt...)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]