Gebr. rat. Fkt. untersuchen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:25 Mi 23.01.2008 | Autor: | die_anke |
Aufgabe | für jedes t>0 ist eine Fkt [mm] f_{t} [/mm] gegeben durch: [mm] f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}} [/mm] ; x [mm] \in [/mm] e [mm] \IR [/mm]
ihr schaubild sei [mm] K_{t}
[/mm]
aufg b): die Kurve [mm] K_{1}, [/mm] die positive x-Achse und die Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen Näherungswert [mm] \overline{A} [/mm] für A erhält man, indem man [mm] K_{1} [/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel soll symmetrisch zur y-Achse sein und die Kurve [mm] K_{1} [/mm] im Ursprung und im Pkt. [mm] P_{1} [/mm] (1/1) verühren.
Bestimmen sie die Gleichung dieser Parabel.
Berechnen Sie [mm] \overline{A}. [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo erst einmal..
Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen. Bin sonst eigentlich ein mittelguter MatheSchüler aber bei dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe das hat auch alles mit der Formeleingabe geklappt.
Also mein größtes Problem ist, dass ich nicht weiß was mit der Parabel 4. Ordnung gemeint ist [mm] x^{4} [/mm] ? aber dann wäre die aufgabenstellung, berechne die gleichung der parabel ja schon gelöst... Wie kann ich auf die richtige gleichung kommen?? Habe ja nur den y-Achenabschnitt.
Naja, also wie gesagt ich hoffe mir kann jm helfen... Wenn ich die Aufgabe geschafft habe dann folgen dann auch ncoh die anderen Aufgabenstellungen.. ;)
Liebe Grüße
|
|
|
|
> für jedes t>0 ist eine Fkt [mm]f_{t}[/mm] gegeben durch:
> [mm]f_{t}(x)=\bruch{4x^{2}}{x^{2}+3t^{2}}[/mm] ; x [mm]\in[/mm] e [mm]\IR[/mm]
> ihr schaubild sei [mm]K_{t}[/mm]
>
> aufg b): die Kurve [mm]K_{1},[/mm] die positive x-Achse und die
> Gerade x=1 begerenzen eine Fläche mit Inhalt A. Einen
> Näherungswert [mm]\overline{A}[/mm] für A erhält man, indem man
> [mm]K_{1}[/mm] durch eine Parabel 4. Ordnung ersetzt. Diese Parabel
> soll symmetrisch zur y-Achse sein und die Kurve [mm]K_{1}[/mm] im
> Ursprung und im Pkt. [mm]P_{1}[/mm] (1/1) verühren.
> Bestimmen sie die Gleichung dieser Parabel.
> Berechnen Sie [mm]\overline{A}.[/mm]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>
> Hallo erst einmal..
> Ich hoffe hier kann mir jemand bei dieser Aufgabe helfen.
> Bin sonst eigentlich ein mittelguter MatheSchüler aber bei
> dieser Aufgabe komme ich einfach nciht weiter. Ich hoffe
> das hat auch alles mit der Formeleingabe geklappt.
> Also mein größtes Problem ist, dass ich nicht weiß was mit
> der Parabel 4. Ordnung gemeint ist [mm]x^{4}[/mm] ?
Der Graph einer Polynomfunktion (aka. ganzrationale Funktion) 4. Grades. Also etwas von der Form $p(x):= [mm] ax^4+bx^3+cx^2+dx+e$, [/mm] mit [mm] $a\neq [/mm] 0$. Da aber zudem diese Parabel symmetrisch zur $y$-Achse sein soll, muss es sich um eine "gerade Funktion" handeln, es muss also $p(-x)=p(x)$ gelten, für alle $x$. Dies bedeutet, dass im Funktionsterm von $p(x)$ nur gerade Potenzen von $x$ auftreten dürfen. Also kann man gleich den einfacheren Ansatz $p(x) := [mm] ax^4+bx^2+c$ [/mm] machen. $a,b,c$ sind dann aus den weiteren Bedingungen, denen $p(x)$ genügen muss, zu bestimmen. Du benötigst also zur Bestimmung der verbleibenden drei Formvariablen $a,b,c$ auch drei Gleichungen, um eine eindeutige Lösung für $p(x)$ zu erhalten. Dies sind: (1) $p(x)$ muss [mm] $K_1$ [/mm] im Ursprung berühren. (2) $p(x)$ muss [mm] $K_1$ [/mm] im Punkt $P(1/1)$ berühren.
Dies sind, auf den ersten Blick beurteilt, scheinbar nur zwei Gleichungen, aber "berühren" bedeutet eben, dass in diesen beiden Punkten auch die Steigungen der beiden Kurven (also die Ableitungen der zugehörigen Funktionen) gleich sind. (Somit besteht allenfalls die Gefahr, dass wir zuviele Gleichungen, nämlich vier, erhalten und es vielleicht gar keine Lösung gibt...)
|
|
|
|