matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGebrochenrationale Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Gebrochenrationale Funktionen
Gebrochenrationale Funktionen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale Funktionen: Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 10.02.2011
Autor: Cremedelacreme

Aufgabe
Rechnen Sie die Extrempunkte, Monotonieverhalten, Wendepunkt und Krümmungsverhalten!

  
  
    * Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen!

Folgende Aufgabenstellung liegt mit zurgrunde.

f(x)= 1/x

Jetzt sollen wir eine Kurvendiskussion machen. Leider komme ich gerade nicht weiter. Ich habe bereits die Ableitungen ausgerechnet.

f´(x)= [mm] -1/x^2 [/mm]
f´´(x)= [mm] 2/x^3 [/mm]
f´´´(x)= [mm] -6/x^4 [/mm]

Allerdings weiß ich grad nicht wie man die Extrempunkte, Monotonieverhalten, Wendepunkt und Krümmungsverhalten ausrechnet.

Ich wäre über jede Hilfe dankbar.

Vielen Dank im voraus.

LG


        
Bezug
Gebrochenrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 10.02.2011
Autor: Steffi21

Hallo, deine Ableitngen sind ok

Extrempunkte: f'(x)=0
Monotonieverhalten: f'(x)>0 streng monoton steigend, f'(x)<0 streng monoton fallend
Wendepunkte: f''(x)=0
Krümmungsverhalten: f''(x)>0 linksgekrümmt, f''(x)<0 rechtsgekrümmt

Steffi



Bezug
                
Bezug
Gebrochenrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 10.02.2011
Autor: Cremedelacreme

Vielen Dank für die schnelle Antwort.

Jetzt habe ich folgendes:

f´(x)= [mm] -1/x^2 [/mm]

[mm] -1/x^2= [/mm] 0

Kommt da -1 raus? Kann mir bitte jemand die Gleichung auflösen...??Ich komm hier nicht weiter....

Bezug
                        
Bezug
Gebrochenrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Do 10.02.2011
Autor: MaTEEler

Hallo,

> Vielen Dank für die schnelle Antwort.
>  
> Jetzt habe ich folgendes:
>  
> f´(x)= [mm]-1/x^2[/mm]
>  
> [mm]-1/x^2=[/mm] 0
>  
> Kommt da -1 raus? Kann mir bitte jemand die Gleichung
> auflösen...??Ich komm hier nicht weiter....


Nein, -1 ist falsch.
Es gibt keine Werte für x, so dass die Gleichung f´(x)=0 erfüllt ist.

Denn wenn du deine Gleichung mit [mm] x^{2} [/mm] multiplizierst erhälst du -1=0, also eine falsche Aussage und somit existiert keine Lösung.

Das bedeutet für deine Kurvendiskussion, dass es keine Stellen mit waagrechter Tangente gibt, also keine Extremwerte bzw. Terassenpunkte.


MfG,
MaTEEler

Bezug
                                
Bezug
Gebrochenrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Do 10.02.2011
Autor: Cremedelacreme

Super vielen Dank für die ausführliche ANtwort...
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]