matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGegenseitige Lage von Ebenen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Gegenseitige Lage von Ebenen
Gegenseitige Lage von Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gegenseitige Lage von Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Do 26.06.2008
Autor: Maaadin

Aufgabe
Untersuchen Sie die Lage der beiden Ebenen [mm] $E_1$ [/mm] und [mm] $E_2$ [/mm] zueinander. Bestimmen Sie ggf. die Schnittgerade.

Hallo Leute,

ich steh grad total auf'm Schlauch.

[mm] $E_1: \vec [/mm] x = [mm] \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}+ r\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} [/mm] + [mm] s\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ [/mm]
[mm] $E_2: \vec [/mm] x = [mm] \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}+ r\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} [/mm] + [mm] s\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ [/mm]

Ich weiss, dass ich die Richtungsvektoren irgendwie vergleichen muss, aber wie genau, weiss ich nicht.
Deswegen waere meine Fragen:
Wie muessen die Richtugnsvektoren denn sein, dass 2 Ebenen parallel, aber nicht identisch sind? Und wie, damit sie sich schneiden? Identisch muesste ja dann sein, wenn die Richtugnsvektoren ein vielfaches voneinander sein, oder?

Gruss,

Martin

        
Bezug
Gegenseitige Lage von Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Do 26.06.2008
Autor: max3000

Hi.

Also:

Untersuche die Normalenvektoren [mm] ($u\times [/mm] v$) auf lineare abhängigkeit.

Sind diese linear abhängig, so sind sie entweder parallel oder identisch.
Diese 2 Fälle überprüfst du, indem du untersuchst, ob ein Punkt der Ebene 1 auf der Ebene 2 liegt.
Da kannst du ja den Punkt
[mm] \vektor{2 \\ 5 \\ 3} [/mm]
in die zweite Ebene einsetzen. Wenn dieser nun noch die Gleichung erfüllt sind die Ebenen identisch, sonst nur parallel. Es bietet sich hier an gleich die Koordinatendarstellung der Ebene anzugeben.

Sind die Normalenvektoren linear unabhängig, so schneiden sich die Ebenen in einer Gerade.

Bezug
                
Bezug
Gegenseitige Lage von Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Do 26.06.2008
Autor: Maaadin

Ahh, jetzt versteh ich.
Ok, laut meiner Rechnung muessten beide Normalenvektoren l.a. sein. Ich hab fuer beide jeweils $ [mm] \vektor{0 \\ 0 \\ 0} [/mm] $
JA gut, ich koennte jetzt noch ueberpruefen, ob sie identisch sind, in dem ich, wie Du schon gesagt hast, [mm] $x_1 [/mm] = 2$, [mm] $x_2 [/mm] = 5$ und [mm] $x_3 [/mm] = 3$ einsetze.
Aber vom Prinzip her hab ich es verstanden.

Danke!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]