matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGeometrischer Ort
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Geometrischer Ort
Geometrischer Ort < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrischer Ort: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 24.01.2008
Autor: belf

Aufgabe
Berechnen Sie den geometrischen Ort aller Punkte X(x,y), für deren Summer der Abstände [mm] \overline{XF_{1}}+ \overline{XF_{2}} [/mm] = 5 gilt, wobei die Punkte [mm] F_{1}(-3,0) [/mm] und [mm] F_{2}(3,0) [/mm] gegeben sind.

Hallo zusammen

Ich denke, dass die oben erwähnte Aufgabe fehlerhaft ist. Ich nehme an, dass dieser geometrische Ort eine Ellipse ist und zwar eine Ellipse mit (0,0) als Mittelpunkt. Die Abstandeigenschaft der Ellipse lautet [mm] \overline{XF_{1}}+ \overline{XF_{2}} [/mm] = 5, also in diesem Fall ist  a=2,5. Da die Brennpunkte (-3,0) und (3,0) sind und (0,0) der Mittelpunkt ist, kann ich behaupten, dass c=3. Also mit a=2,5 und c=3, kann ich ohne komplexe Zahlen dieses Problem nicht lösen, stimmt das ?

Ich habe mir also gedacht, dass der Mittelpunk nicht (0,0) ist, aber dann würden die Brennpunkte nicht (-3,0) (3,0) sein.

Stimmt meine Überlegung ?

Vielen Dank !

        
Bezug
Geometrischer Ort: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 24.01.2008
Autor: Somebody


> Berechnen Sie den geometrischen Ort aller Punkte X(x,y),
> für deren Summer der Abstände [mm][mm] \overline{XF_{1}}+ \overline{XF_{2}}= [/mm] 5
> gilt, wobei die Punkte [mm]F_{1}(-3,0)[/mm] und [mm]F_{2}(3,0)[/mm]
> gegeben sind.
>  Hallo zusammen
>  
> Ich denke, dass die oben erwähnte Aufgabe fehlerhaft ist.

Denke ich auch.

> Ich nehme an, dass dieser geometrische Ort eine Ellipse ist

Allenfalls eine "entartete Ellipse" (aka. leere Menge).

> und zwar eine Ellipse mit (0,0) als Mittelpunkt. Die
> Abstandeigenschaft der Ellipse lautet [mm]\overline{XF_{1}}+ \overline{XF_{2}}[/mm]
> = 5, also in diesem Fall ist  a=2,5. Da die Brennpunkte
> (-3,0) und (3,0) sind und (0,0) der Mittelpunkt ist, kann
> ich behaupten, dass c=3. Also mit a=2,5 und c=3, kann ich
> ohne komplexe Zahlen dieses Problem nicht lösen, stimmt das
> ?
>  
> Ich habe mir also gedacht, dass der Mittelpunk nicht (0,0)
> ist, aber dann würden die Brennpunkte nicht (-3,0) (3,0)
> sein.
>  
> Stimmt meine Überlegung ?

Vermutlich schon, aber ich selbst würde nicht so umständlich argumentieren wollen. Denn wegen der "Dreiecksungleichung" müsste für einen Punkt $X$ auf dem gesuchten geometrischen Ort ja gelten:

[mm]6=\overline{F_1F}_2\red{\leq} \overline{F_1X}+\overline{XF_2}=5[/mm]

was offensichtlich nicht zu haben ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]