Geometrischer Ort < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:37 Do 24.01.2008 | Autor: | belf |
Aufgabe | Berechnen Sie den geometrischen Ort aller Punkte X(x,y), für deren Summer der Abstände [mm] \overline{XF_{1}}+ \overline{XF_{2}} [/mm] = 5 gilt, wobei die Punkte [mm] F_{1}(-3,0) [/mm] und [mm] F_{2}(3,0) [/mm] gegeben sind. |
Hallo zusammen
Ich denke, dass die oben erwähnte Aufgabe fehlerhaft ist. Ich nehme an, dass dieser geometrische Ort eine Ellipse ist und zwar eine Ellipse mit (0,0) als Mittelpunkt. Die Abstandeigenschaft der Ellipse lautet [mm] \overline{XF_{1}}+ \overline{XF_{2}} [/mm] = 5, also in diesem Fall ist a=2,5. Da die Brennpunkte (-3,0) und (3,0) sind und (0,0) der Mittelpunkt ist, kann ich behaupten, dass c=3. Also mit a=2,5 und c=3, kann ich ohne komplexe Zahlen dieses Problem nicht lösen, stimmt das ?
Ich habe mir also gedacht, dass der Mittelpunk nicht (0,0) ist, aber dann würden die Brennpunkte nicht (-3,0) (3,0) sein.
Stimmt meine Überlegung ?
Vielen Dank !
|
|
|
|
> Berechnen Sie den geometrischen Ort aller Punkte X(x,y),
> für deren Summer der Abstände [mm][mm] \overline{XF_{1}}+ \overline{XF_{2}}= [/mm] 5
> gilt, wobei die Punkte [mm]F_{1}(-3,0)[/mm] und [mm]F_{2}(3,0)[/mm]
> gegeben sind.
> Hallo zusammen
>
> Ich denke, dass die oben erwähnte Aufgabe fehlerhaft ist.
Denke ich auch.
> Ich nehme an, dass dieser geometrische Ort eine Ellipse ist
Allenfalls eine "entartete Ellipse" (aka. leere Menge).
> und zwar eine Ellipse mit (0,0) als Mittelpunkt. Die
> Abstandeigenschaft der Ellipse lautet [mm]\overline{XF_{1}}+ \overline{XF_{2}}[/mm]
> = 5, also in diesem Fall ist a=2,5. Da die Brennpunkte
> (-3,0) und (3,0) sind und (0,0) der Mittelpunkt ist, kann
> ich behaupten, dass c=3. Also mit a=2,5 und c=3, kann ich
> ohne komplexe Zahlen dieses Problem nicht lösen, stimmt das
> ?
>
> Ich habe mir also gedacht, dass der Mittelpunk nicht (0,0)
> ist, aber dann würden die Brennpunkte nicht (-3,0) (3,0)
> sein.
>
> Stimmt meine Überlegung ?
Vermutlich schon, aber ich selbst würde nicht so umständlich argumentieren wollen. Denn wegen der "Dreiecksungleichung" müsste für einen Punkt $X$ auf dem gesuchten geometrischen Ort ja gelten:
[mm]6=\overline{F_1F}_2\red{\leq} \overline{F_1X}+\overline{XF_2}=5[/mm]
was offensichtlich nicht zu haben ist.
|
|
|
|