matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGerade und Ebene in R3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Gerade und Ebene in R3
Gerade und Ebene in R3 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Ebene in R3: Frage
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:00 Mo 15.11.2004
Autor: a.lexa

Hallo miteinander!
Ich würde gern wissen, ob ich in folgender Aufgabe auf der richtigen Spur bin:
Ich habe zwei Ebenen gegeben mit:
E1: x+y-3z=2     und    E2: 2x+y+z=0

Nun soll ich erst mal zeigen, dass der Punkt (-2, 4, 0) auf beiden Ebenen liegt. Das mach ich dann wohl am besten durch einsetzen von P in
E1: -2+4-0=2    und     E2: 2(-2)+4+0=0 ?! Klappt ja zumindest :-)

Als nächstes soll ich die Parameterdarstellung der Schnittgeraden von E1 und E2 berechen. (Als Hilfestellung soll ich mir einen Vektor suchen, der auf den Normalenvektoren der beiden Ebenen senkrecht steht. ZUsätzlich soll ich mein erstes Ergebnis verwenden.)
Über das Kreuzprodukt (Vektorprodukt) habe ich hier erst mal einen Richtungsvektor ermittelt: E1xE2 = (4, -7, 1) und dann über zwei Gleichungen einen Stützvektor (-2, 4, 0)
Alles in allem müßte meine Parameterdarstellung der Schnittgeraden hoffentlich folgendermaßen aussehen:
g: x= [mm] \vektor{-2 \\ 4\\ 0}+ \lambda \vektor{4 \\ -7\\ 1} [/mm]

Als Letztes sollte ich noch herausfinden, welche der beiden Ebenen den größeren Abstand zum Punkt (-4, 11, 1) aufweist. Hier bin ich mit folgender Formal herangegangen:
d=  [mm] \bruch{|ar1+br2+cr3-r|}{ \wurzel{a²+b²+c²}} [/mm]

Müßte also für die erste Ebene so aussehen:

d= [mm] \bruch{|1*(-4)+1*11-3*1-2|}{ \wurzel{1²+2²-3²}} [/mm]
d= [mm] \bruch{|2|}{ \wurzel{11}} [/mm]
d= 0,603

Für die Ebene 2 ergibt sich ein Abstand von [mm] d=\bruch{4}{ \wurzel{6}}=1,633 [/mm]
Meinen rechnerisch unterentwicktelten Fähigkeiten zufolge müßte also die Ebene 2 den größeren Abstand zum Punkt (-4, 11, 1) haben.

Wer kann mir sagen, ob das stimmen kann. Irgendwie hab ich das Gefühl, dass das "zuuuu" einfach war und ich mir nun erst mal einbilde, einen Fehler gemacht zu haben?!

Freue mich natürlich auch, wenn es stimmen sollte. Aber Ihr wißt das sicher besser als ich.

Besten Dank im Voraus, a.lexa

Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]