matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 29: OberstufenmathematikGerade und Strecke II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "VK 29: Oberstufenmathematik" - Gerade und Strecke II
Gerade und Strecke II < VK 29: Oberstufe < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Strecke II: anal. Geom. der Geraden
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 18:05 Di 30.12.2008
Autor: argl

Aufgabe

Überprüfen Sie rechnerisch ob sich die Strecken AB und CD schneiden ! Ermitteln Sie das Teilungsverhältnis, in dem sie durch den Schittpunkt S geteilt werden !

a) $A [mm] \vektor{2 \\ 1 \\ 3} [/mm]  B [mm] \vektor{8 \\ 4 \\ 0} [/mm]  C [mm] \vektor{4 \\ 7 \\ 7} [/mm] D [mm] \vektor{8 \\ -1 \\ -5}$ [/mm]

b) $A [mm] \vektor{1 \\ 1 \\ 2} [/mm]  B [mm] \vektor{5 \\ 9 \\ -2} [/mm]  C [mm] \vektor{5 \\ 9 \\ 4} [/mm] D [mm] \vektor{1 \\ 1 \\ 0}$ [/mm]



        
Bezug
Gerade und Strecke II: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:08 So 26.04.2009
Autor: Schachschorsch56

a)A [mm] \vektor{2 \\ 1 \\ 3} [/mm] B [mm] \vektor{8 \\ 4 \\ 0} [/mm] C [mm] \vektor{4 \\ 7 \\ 7} [/mm] D [mm] \vektor{8 \\ -1 \\ -5} [/mm]

Zuerst bilde ich die Geradengleichungen g (mit A und B) und h (mit C und D). Dann setze ich die Gleichungen gleich, um festzustellen, ob es einen Schnittpunkt S gibt. Wenn es S gibt und dieser auch Schnittpunkt der Strecken [mm] \overline{AB} [/mm] und [mm] \overline{CD} [/mm] sein soll, dann müssen die Skalare [mm] \lambda [/mm] und [mm] \mu [/mm] noch folgende Bedingung erfüllen:

0 [mm] \le \lambda \le [/mm] 1 und 0 [mm] \le \mu \le [/mm] 1 !

g und h lauten:

[mm] g:\vec{x}=\vektor{2 \\ 1 \\ 3}+\lambda\vektor{6 \\ 3 \\ -3} [/mm]

[mm] g:\vec{x}=\vektor{4 \\ 7 \\ 7}+\mu\vektor{4 \\ -8 \\ -12} [/mm]

[mm] S(S_1|S_2|S_3)=\vec{S}=\vektor{S_1 \\ S_2 \\ S_3}=\vektor{2 \\ 1 \\ 3}+\lambda\vektor{6 \\ 3 \\ -3}=\vektor{4 \\ 7 \\ 7}+\mu\vektor{4 \\ -8 \\ -12} [/mm]

als LGS geschrieben:

I 2 + [mm] 6\lambda [/mm] = 4 + [mm] 4\mu \Rightarrow \mu [/mm] = [mm] \bruch{3}{2}\lambda -\bruch{1}{2} [/mm] setze [mm] \mu [/mm] in II und III ein:
II 1 [mm] +3\lambda [/mm] = 7 - [mm] 8\mu [/mm]
III 3 - [mm] 3\lambda [/mm] = 7 - [mm] 12\mu [/mm]

II 1 + [mm] 3\lambda [/mm] = 7 [mm] 12\lambda [/mm] +4 [mm] \Rightarrow \lambda [/mm] = [mm] \bruch{2}{3} [/mm]
III 3 - [mm] 3\lambda [/mm] = 7 - [mm] 18\lambda [/mm] + 6 [mm] \Rightarrow \lambda [/mm] = [mm] \bruch{2}{3} [/mm]

eingesetzt in I ergibt dies [mm] \mu [/mm] = [mm] \bruch{1}{2} [/mm]

Da beide Skalare die o.a. Bedingung erfüllen, ist S auch Schnittpunkt der Strecken [mm] \overline{AB} [/mm] und [mm] \overline{CD} [/mm] !

Es gibt nun 2 Wege, das Teilungsverhältnis, in dem die Strecken durch den Schnittpunkt S geteilt werden, zu suchen !

Ich hatte zuerst den schwierigeren Weg benutzt:

Zuerst bestimmte ich den Schnittpunkt S und erhielt: S (6|3|1), dann bestimmte ich die Länge des Vektors [mm] \overrightarrow{AB} [/mm] und erhielt [mm] 3\wurzel{6}. [/mm] Dann berechnete ich die Länge des Vektors [mm] \overrightarrow{SB} [/mm] und erhielt [mm] \wurzel{6}. [/mm] Damit zeigte ich, dass S die Strecke [mm] \overline{AB} [/mm] im Verhältnis 1 : 2 teilt !

Ebenso machte ich es für die andere Strecke [mm] \overline{CD}. [/mm] Dort bekam ich als Länge von [mm] \overline{CD} [/mm] = [mm] 4\wurzel{14}, [/mm] als Länge von [mm] \overline{SD} [/mm] = [mm] 2\wurzel{14} [/mm] und das Teilungsverhältnis 1 : 1 heraus !

Wenn man sich aber die anfangs ermittelten Werte von [mm] \lambda=\bruch{2}{3} [/mm] und [mm] \mu=\bruch{1}{2} [/mm] genauer betrachtet hätte, dann hätte man sich die o.a. Längenberechnungen sparen und sofort das jeweilige Teilungsverhältnis erkennen können !

b)A [mm] \vektor{1 \\ 1 \\ 2} [/mm] B [mm] \vektor{5 \\ 9 \\ -2} [/mm] C [mm] \vektor{5 \\ 9 \\ 4} [/mm] D [mm] \vektor{1 \\ 1 \\ 0} [/mm]

zuerst bestimme ich die Geradengleichungen:

[mm] g:\vec{x}=\vektor{1 \\ 1 \\ 2}+\lambda\vektor{4 \\ 8 \\ -4} [/mm]

[mm] g:\vec{x}=\vektor{5 \\ 9 \\ 4}+\mu\vektor{-4 \\ -8 \\ -4} [/mm]

[mm] S(S_1|S_2|S_3)=\vec{S}=\vektor{S_1 \\ S_2 \\ S_3}=\vektor{1 \\ 1 \\ 2}+\lambda\vektor{4 \\ 8 \\ -4}=\vektor{5 \\ 9 \\ 4}+\mu\vektor{-4 \\ -8 \\ -4} [/mm]

als LGS geschrieben:

I 1 + [mm] 4\lambda [/mm] = 5 - [mm] 4\mu \Rightarrow \lambda [/mm] = 1 - [mm] \mu [/mm] setze in II und III ein:
II 1 + [mm] 8\lambda [/mm] = 9 - [mm] 8\mu [/mm]
III 2 - [mm] 4\lambda [/mm] = 4 - [mm] 4\mu [/mm]

II 1 + 8 - [mm] 8\mu [/mm] = 9 - [mm] 8\mu \Rightarrow [/mm] 9=9 stimmt aber [mm] \mu [/mm] fehlt auch !
III 2 - 4 + [mm] 4\mu [/mm] = 4 - [mm] 4\mu \Rightarrow \mu [/mm] = [mm] \bruch{3}{4} [/mm]

[mm] \mu [/mm] eingesetzt in I ergibt [mm] \lambda [/mm] = [mm] \bruch{1}{4} [/mm]

Gemäß meinen Ausführungen zu Aufgabe a) dürfte der Schnittpunkt S (nach den Werten von S wurde in der Aufgabenstellung ja nicht gefragt) [mm] \overline{AB} [/mm] im Verhältnis von 1 : 3 und [mm] \overline{CD} [/mm] im Verhältnis von 3 : 1 teilen !

Schorsch

Bezug
                
Bezug
Gerade und Strecke II: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 23:37 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


> Zuerst bilde ich die Geradengleichungen g (mit A und B) und
> h (mit C und D). Dann setze ich die Gleichungen gleich, um
> festzustellen, ob es einen Schnittpunkt S gibt. Wenn es S
> gibt und dieser auch Schnittpunkt der Strecken
> [mm]\overline{AB}[/mm] und [mm]\overline{CD}[/mm] sein soll, dann müssen die
> Skalare [mm]\lambda[/mm] und [mm]\mu[/mm] noch folgende Bedingung erfüllen:
>  
> 0 [mm]\le \lambda \le[/mm] 1 und 0 [mm]\le \mu \le[/mm] 1 !

[ok] Sehr gut.

  

> g und h lauten:
>  
> [mm]g:\vec{x}=\vektor{2 \\ 1 \\ 3}+\lambda\vektor{6 \\ 3 \\ -3}[/mm]
>  
> [mm]g:\vec{x}=\vektor{4 \\ 7 \\ 7}+\mu\vektor{4 \\ -8 \\ -12}[/mm]

[ok]

  

>  [mm]\Rightarrow \lambda[/mm] = [mm]\bruch{2}{3}[/mm]
>  
> eingesetzt in I ergibt dies [mm]\mu[/mm] = [mm]\bruch{1}{2}[/mm]

[ok]

  

> Da beide Skalare die o.a. Bedingung erfüllen, ist S auch
> Schnittpunkt der Strecken [mm]\overline{AB}[/mm] und [mm]\overline{CD}[/mm] !

[ok]
  

> Wenn man sich aber die anfangs ermittelten Werte von
> [mm]\lambda=\bruch{2}{3}[/mm] und [mm]\mu=\bruch{1}{2}[/mm] genauer
> betrachtet hätte, dann hätte man sich die o.a.
> Längenberechnungen sparen und sofort das jeweilige
> Teilungsverhältnis erkennen können !

[ok] Genau ...


Gruß
Loddar


Bezug
                
Bezug
Gerade und Strecke II: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 23:40 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


[ok] Korrekt ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 0m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 4h 34m 9. HJKweseleit
S8-10/Ableitung
Status vor 4h 56m 8. HJKweseleit
ZahlTheo/rat. Zahl = Summe von Brüchen
Status vor 5h 33m 3. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 6h 17m 3. HJKweseleit
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]