matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGeraden im KOS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Geraden im KOS
Geraden im KOS < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden im KOS: Besondere Lage
Status: (Frage) beantwortet Status 
Datum: 12:38 So 27.08.2006
Autor: Informacao

Aufgabe
Notiere die Geradengleichung ausführlich als Gleichung mit beiden Variablen x, y. Zeichne die Gerade. Welche der Punkte [mm] P_{0}(-4|3), P_{1}(0|-2), P_{2}(0|2), P_{3}(3|-2,5), P_{4}(-2|0), P_{5}(0|0) [/mm] liegen auf dieser Geraden?

a.) x=3     b.) y=3

Hallo,

ich habe eine Frage zu der aufgabe:

Eine geradengleichung hat ja die Form:
y=m*x+b , oder?

wie ist das denn da jetzt gemeint? ich krieg das nicht hin...
und wie muss ich dann testen, ob die punkte auf der geraden liegen?
einfach einsetzen? aber dafür bräuchte ich ja erst die geradengleichung-

ich würde mich über hilfe freuen!
viele grüße
informacao

        
Bezug
Geraden im KOS: Tipp.
Status: (Antwort) fertig Status 
Datum: 12:58 So 27.08.2006
Autor: Christian

Hallo.

Also wenn das die ganze Aufgabe sein soll, würde ich mal behaupten, daß $x=3$ und $y=3$ die fraglichen Geradengleichungen sind.

> Eine geradengleichung hat ja die Form:
> y=m*x+b , oder?

Fast alle Geraden haben eine Gleichung dieser Form. Eben alle bis auf die, die senkrecht zur x-Achse sind. Die haben Gleichungen der Form x=b.
Und eine solche ist a).

Gruß,
Christian

Bezug
                
Bezug
Geraden im KOS: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:08 So 27.08.2006
Autor: Informacao

Stimmt, danke, dass hab ich verstanden...

aber wie mach ich das dann mit den Punkten...wie finde ich dann raus, ob die auf dem Graphen liegen? rechnerisch meine ich...

Bezug
                        
Bezug
Geraden im KOS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 So 27.08.2006
Autor: Disap

Hey.

> Stimmt, danke, dass hab ich verstanden...
>  
> aber wie mach ich das dann mit den Punkten...wie finde ich
> dann raus, ob die auf dem Graphen liegen? rechnerisch meine
> ich...

Na ja, zum einen ist da die Möglichkeit: Überlegen. Denn, wie sieht x=3  eigentlich aus? Ganz einfach - es ist eine senkrechte. Sie geht durch alle Y-Werte, aber hat nur den X-Wert 3. Steht eben Senkrecht. Sie läuft also durch alle Punkte mit der (X-) Stelle 3. Egal ob der Y-Wert 10 oder 4 oder -3 ist.

Und y=3? Na, das ist ähnlich, dies ist eine waagerechte bzw. eine parallele zur X-Achse. Sie hat quasi jeden X-Wert, durchläuft aber nur den Y-Wert 3.

Man kann es also ablesen.
Oder man macht es so wie immer - durch einsetzen.

Rein fiktiv lautet ein Punkt [mm] A(\red{3}|\blue{12}) [/mm]

Für [mm] \red{x}=3 [/mm] kannst du auch nur den (roten) X-Wert einsetzen, denn in der Gleichung steht nichts von einem y (blau)

Bei Aufgabe b setzt du dann eben [mm] \blue{y}=3 [/mm] den (blau) Y-Wert ein

[mm] $\blue{12}\not= [/mm] 3$

Da 12 ungleich 3 ist, liegt der Punkt nicht auf der Geraden von Aufg. b, sondern nur von Aufgabe a.

Alles klar?



Schöne Grüße
Disap

Bezug
                                
Bezug
Geraden im KOS: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 So 27.08.2006
Autor: Informacao

ach ja danke, jetzt ist alles klar!!

informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]