matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeraden und Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Geraden und Ebenen
Geraden und Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden und Ebenen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:12 Di 21.11.2006
Autor: cOw

Aufgabe
In einem kartesischen Koordinatensystem sind die parallelen Geraden g und h gegeben:
g: [mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 0 \\ 2} [/mm] + k [mm] \vektor{1 \\ 0 \\ -1} [/mm]
h: [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ -1 \\ 0} [/mm] + t [mm] \vektor{-1 \\ 0 \\ -1} [/mm]

a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform, die die Geraden g und h enthält!

b) Zeigen Sie: A(-2|0|0) [mm] \varepsilon [/mm] g

c) Bestimmen Sie den Punkt N auf h, der Punkt A am nächsten liegt!

d) Berechnen Sie den Abstand der Geraden g und h!

Brauche dringend Hilfe bei den Aufgaben, da ich zu Zeiten des Themas eine hohe Fehlzeit hatte und ich somit die Regeln nicht wirklich kenne.
Ich brauche nicht die genauen Rechnungen, sondern nur die Ansätze, wie die Aufgaben zu lösen sind!
Wäre nett, falls ihr mir helfen könntet!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geraden und Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Di 21.11.2006
Autor: statler

Guten Abend noch mal!

> In einem kartesischen Koordinatensystem sind die parallelen
> Geraden g und h gegeben:
>  g: [mm]\vec{x}[/mm] = [mm]\vektor{0 \\ 0 \\ 2}[/mm] + k [mm]\vektor{1 \\ 0 \\ -1}[/mm]
>  
> h: [mm]\vec{x}[/mm] = [mm]\vektor{1 \\ -1 \\ 0}[/mm] + t [mm]\vektor{-1 \\ 0 \\ -1}[/mm]

>

Ich kann nicht glauben, daß die Geraden parallel sind. die Richtungsvektoren stehen doch senkrecht aufeinander.
  

> a) Ermitteln Sie eine Gleichung der Ebene E in
> Normalenform, die die Geraden g und h enthält!

Wenn die Geraden in einr Ebene liegen sollen und nicht parallel sind, dann müssen sie sich schneiden. Tun sie aber nicht, weil die y-Koordinatn immer ungleich sind.

> b) Zeigen Sie: A(-2|0|0) [mm]\varepsilon[/mm] g

Das kannst du durch Einsetzen prüfen. Es stimmt aber nicht!

> c) Bestimmen Sie den Punkt N auf h, der Punkt A am nächsten
> liegt!

Der Vektor durch A und N muß auf h senkrecht stehen.

> d) Berechnen Sie den Abstand der Geraden g und h!

Dazu brauchst du eine Gerade, die auf g und h senkrecht steht.

c) und d) müßten sich lösen lassen, bei a) und b) tippe ich auf Schreibfehler oder so ...

Gruß
Dieter


Bezug
                
Bezug
Geraden und Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Di 21.11.2006
Autor: cOw

Hallo Dieter,

vielen Dank schonmal für dein Bemühen!
Ein mögliches Ergebnis für a) ist
[mm] -x_{1}-3x_{2}+x_{3}-2=0 [/mm]
von daher muss es ja stimmen, denn die Ebene ist korrekt.

Könntest du mir evtl noch die Verfahren sagen, die ich für c und d benötige?
Das wäre sehr hilfreich!

Bezug
                        
Bezug
Geraden und Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Di 21.11.2006
Autor: cOw

Also ich denke auch, dass es jetzt ein Schreibfehler war un das Minuszeichen fehlte oder zu viel war.
Ich bräuchte aber immernoch Hilfe bei der Ermittlung der Ebene und bei c), ich weiss nicht wie das geht!

Bezug
                        
Bezug
Geraden und Ebenen: Berichtigung
Status: (Antwort) fertig Status 
Datum: 18:34 Do 23.11.2006
Autor: informix

Hallo cOw,


stehen die Geraden so in deinem Heft?

>  g: $ [mm] \vec{x} [/mm]  =  [mm] \vektor{0 \\ 0 \\ 2} [/mm]  + k  [mm] \vektor{1 \\ 0 \\ -1} [/mm] $
>  
> h: $ [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ -1 \\ 0} [/mm]  + t [mm] \vektor{-1 \\ 0 \\ -1} [/mm] $

Da A(-2|0|0) auf der Geraden A liegen soll, kannst du doch leicht rückwärts rechnen:

[mm] $\vec{a}=\vektor{-2\\0\\0}=\vektor{0 \\ 0 \\ 2} [/mm]  + k  [mm] \vektor{1 \\ 0 \\ -1}$ [/mm]

schon durch Hingucken sieht man, dass für k=2 die zweite und dritte Komponente stimmt. Also muss die erste Komponente des Richtungsvektors -1 und nicht 1 heißen.

Überprüfe dies mit der Ebenengleichung: beide Aufhängepunkte von g und h sollten die Ebenengleichung erfüllen, ebenso der (gemeinsame) Richtungsvektor.

> Hallo Dieter,
>  
> vielen Dank schonmal für dein Bemühen!
>  Ein mögliches Ergebnis für a) ist
> [mm]-x_{1}-3x_{2}+x_{3}-2=0[/mm]
>  von daher muss es ja stimmen, denn die Ebene ist korrekt.
>  
> Könntest du mir evtl noch die Verfahren sagen, die ich für
> c und d benötige?
>  Das wäre sehr hilfreich!

Kennst du das MBSkalarprodukt? Du suchst einen neuen Vektor, der auf beiden Geraden senkrecht steht.
Er gibt die Richtung vor, in der von g aus N zu suchen ist: N liegt auf dieser Geraden durch A mit diesem Vektor als Richtung und auf h [mm] \rightarrow [/mm] Schnittpunkt bestimmen.
Anschließend die Länge |AN| bestimmen.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]