matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeradenschar/Ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Geradenschar/Ebene
Geradenschar/Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschar/Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 So 15.03.2009
Autor: Mandy_90

Aufgabe
Gegeben sind die Geradenschar [mm] g_{a}:\vec{x}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}, a\in\IR, [/mm] sowie die Ebene E:2x+y-3z=5.

a) Gehört die Gerade [mm] h:\vec{x}=\vektor{-3 \\ 5 \\ -1}+s*\vektor{-4 \\ 2 \\ 0} [/mm] zur Geradenschar [mm] g_{a}? [/mm]

b) Gibt es eine Ursprungsgerade in der Schar [mm] g_{a}? [/mm]
c) Untersuchen Sie die relative Lage der Schar [mm] g_{a} [/mm] zur Ebene E in Abhängigkeit vom Parameter a.

Hallo zusammen^^

Ich hab diese Aufgabe gerechnet,hab da aber einige Probleme.

Bei der a) weiß ich nicht genau wie ich vorgehen soll.Vielleicht den Stützpunkt von h in die Schar einsetzen?

b) Hier hab ich folgendes berechnet:

[mm] \vektor{0 \\ 0 \\ 0}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1} [/mm]

Das daraus entstehende Gleichungssystem ist aber unlösbar,d.h. es gibt keine Ursprungsgerade in der Schar.

c) Hier hab ich die Punkte der Geraden aufgeschrieben,also x=1+2ar, y=3+r, z=-1+ra+r und diese in die Ebenengleichung eingesetzt.Dan kam ich am Ene auf [mm] r=\bruch{-3}{(a-2)}. [/mm]
Das bedeutet doch,dass für [mm] a\not=2 [/mm] die Geraden der Schar die Ebene shcneiden.Und heißt das jetzt auch,dass für a=2 die Gerade parallel zur Ebene ist?

Vielen Dank

lg

        
Bezug
Geradenschar/Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 15.03.2009
Autor: M.Rex

Hallo

> Gegeben sind die Geradenschar [mm]g_{a}:\vec{x}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}, a\in\IR,[/mm]
> sowie die Ebene E:2x+y-3z=5.
>  
> a) Gehört die Gerade [mm]h:\vec{x}=\vektor{-3 \\ 5 \\ -1}+s*\vektor{-4 \\ 2 \\ 0}[/mm]
> zur Geradenschar [mm]g_{a}?[/mm]
>  
> b) Gibt es eine Ursprungsgerade in der Schar [mm]g_{a}?[/mm]
>  c) Untersuchen Sie die relative Lage der Schar [mm]g_{a}[/mm] zur
> Ebene E in Abhängigkeit vom Parameter a.
>  Hallo zusammen^^
>  
> Ich hab diese Aufgabe gerechnet,hab da aber einige
> Probleme.
>  
> Bei der a) weiß ich nicht genau wie ich vorgehen
> soll.Vielleicht den Stützpunkt von h in die Schar
> einsetzen?

Nicht ganz. Schaue mal, ob es ein a gibt, so dass
[mm] \vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1} [/mm]
Also ist das LGS
[mm] \gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)} [/mm]
[mm] \gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r} [/mm]
eindeutig lösbar?

>  
> b) Hier hab ich folgendes berechnet:
>  
> [mm]\vektor{0 \\ 0 \\ 0}=\vektor{1 \\ 3 \\ -1}+r*\vektor{2a \\ 1 \\ a+1}[/mm]
>  
> Das daraus entstehende Gleichungssystem ist aber
> unlösbar,d.h. es gibt keine Ursprungsgerade in der Schar.

[daumenhoch]

>  
> c) Hier hab ich die Punkte der Geraden aufgeschrieben,also
> x=1+2ar, y=3+r, z=-1+ra+r und diese in die Ebenengleichung
> eingesetzt.Dan kam ich am Ene auf [mm]r=\bruch{-3}{(a-2)}.[/mm]
>  Das bedeutet doch,dass für [mm]a\not=2[/mm] die Geraden der Schar
> die Ebene shcneiden.Und heißt das jetzt auch,dass für a=2
> die Gerade parallel zur Ebene ist?

Das Ergebnis habe ich jetzt nicht nachgerechnet, der Weg ist aber korrekt.

>  
> Vielen Dank
>  
> lg

Marius

Bezug
                
Bezug
Geradenschar/Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 15.03.2009
Autor: Mandy_90

Vielen Dank.

> > Bei der a) weiß ich nicht genau wie ich vorgehen
> > soll.Vielleicht den Stützpunkt von h in die Schar
> > einsetzen?
>  
> Nicht ganz. Schaue mal, ob es ein a gibt, so dass
> [mm]\vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1}[/mm]
>  Also ist das LGS
> [mm]\gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)}[/mm]
>  [mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r}[/mm]
>  
> eindeutig lösbar?
>  

Nein,das System ist nicht eindeutig lösbar.Heißt das die Gerade h gehört nicht zur Schar?
Ich versteh aber nicht warum man jetzt h und [mm] g_{a} [/mm] gleichsetzt.Mit gleichsetzen berechnet man doch den Schnittpunkt und wir wollten doch wissen ob h zu [mm] g_{a} [/mm] gehört?Ich versteh grad den Zusammenhang nicht.

lg


Bezug
                        
Bezug
Geradenschar/Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 So 15.03.2009
Autor: MathePower

Hallo Mandy_90,

> Vielen Dank.
>  
> > > Bei der a) weiß ich nicht genau wie ich vorgehen
> > > soll.Vielleicht den Stützpunkt von h in die Schar
> > > einsetzen?
>  >  
> > Nicht ganz. Schaue mal, ob es ein a gibt, so dass
> >
> [mm]\vektor{-3\\5\\-1}+s\cdot{}\vektor{-4\\2\\0}=\vektor{1\\3\\-1}+r*vektor{2a\\1\\a+1}[/mm]
>  >  Also ist das LGS
> > [mm]\gdw \vmat{-3-4s=1+2ar\\5+2s=3+r\\-1=-1+r(a+1)}[/mm]
>  >  [mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=-1+r}[/mm]


Hier muß es doch heißen:

[mm]\gdw \vmat{-4s-2ar=4\\2s-r=-2\\-ar=\red{0}+r}[/mm]


>  
> >  

> > eindeutig lösbar?
>  >  
>
> Nein,das System ist nicht eindeutig lösbar.Heißt das die
> Gerade h gehört nicht zur Schar?

>  Ich versteh aber nicht warum man jetzt h und [mm]g_{a}[/mm]
> gleichsetzt.Mit gleichsetzen berechnet man doch den
> Schnittpunkt und wir wollten doch wissen ob h zu [mm]g_{a}[/mm]
> gehört?Ich versteh grad den Zusammenhang nicht.


Nun, wir nehmen an, daß h  zur Geradeschar [mm]g_{a}[/mm] gehört.

Dann müssen wir zeigen, daß

1. [mm]\pmat{-4 \\ 2 \\ 0}= \lambda * \pmat {2a \\ 1 \\ a+1}[/mm]

2. [mm]\pmat{-3 \\ 5 \\ -1}=\pmat{1\\3\\-1}+r*\pmat{2a \\ 1 \\ a+1}[/mm]

Zusammengefasst:

[mm]\pmat{-3 \\ 5 \\ -1}+s\pmat{-4 \\ 2 \\ 0}=\pmat{1\\3\\-1}+r*\pmat{2a \\ 1 \\ a+1}[/mm]


>  
> lg
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]