Gesamtenergie < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:59 Sa 17.05.2008 | Autor: | krisu112 |
Hallo,
leider hänge ich beim Lösen einer Aufgabe bei einer bestimmten Betrachtung, vielleicht könnt ihr mir ja helfen:
Die Aufgabe lautet:
Zeigen Sie für die harmonische Schwingung eines Federpendels (Federkonstante k, Punktmasse m) durch explizite Berechnung, dass die Gesamtenergie zeitlich konstant ist. Deuten sie die Gesamtenergie.
Ein Tip von meinem Prof.:
Die potentielle Energie im Schwerefeld geht nicht mit ein!
Meine Frage: WARUM!!!!!!
Mit dem Energie erhaltungssatz kam ich nicht weiter, da ich immer mit der potentiellen Energie gerechnte habe!
Ich würde mich freuen wenn jemand die Zeit findet mir mein Problem zu erklären!
mfg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:48 Sa 17.05.2008 | Autor: | Phecda |
hi
ja du kannst die achse auf der die bewegung stattfindet senkrecht zu [mm] \vec{g} [/mm] legen. d.h. Deine Oszillation findet bsp. entlang der x achse statt, obwohl g in die negative z achse zeigt.
Die Höhenenergie brauchst du nicht zu betrachten.
Es gilt aber folgendes:
Kinetische Energie ist T= [mm] 1/2*m*v^2 [/mm]
und die potentzielle Energie für eine Feder ist: V = [mm] 1/2*kx^2 [/mm]
du kannst nun deine Bewegungsgleichung nehmen x(t)= ...
und sie einmal in V und einmal in T einsetzen (vorher x(t) ableiten ergibt v)
Wenn du T und V dann addierst wird die gesamte Energie E = T+V unabhängig von der Zeit t sein.
Tip: [mm] sin^2+cos^2=1
[/mm]
Lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:39 Sa 17.05.2008 | Autor: | leduart |
Hallo
Auch wenn die Feder mit Masse senkrecht hängt, spielt die potentielle Energie keine Rolle. Das Gewicht wird ja in der Ruhelage durch die Feder aufgehoben. ohne Gewichtskraft auch keine pot. Energie.
Vorstellung: um das Gewicht aus der Ruhestellung 1mm nach oben oder nach unten zu bewegen brauchst du, wenn es an der feder hängt praktisch keine kraft. um es 5cm nach oben zu heben, brauchst du nur k*0,05m und nicht m*g*0,05m.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:35 So 18.05.2008 | Autor: | krisu112 |
Danke für eure Hilfe, vor allem für das anschauliche Beispiel!!!!
Ich habs verstanden
|
|
|
|