matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeGesamtschrittverfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Numerik linearer Gleichungssysteme" - Gesamtschrittverfahren
Gesamtschrittverfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesamtschrittverfahren: Konvergenz
Status: (Frage) beantwortet Status 
Datum: 11:32 Mo 07.03.2011
Autor: aly19

Aufgabe
Zeigen sie, dass das GSV für folgende Matrix [mm] A\in \IR^{n\times n} [/mm] konvergent ist.
1<=i,j<=n:
[mm] a_{i,j}=\begin{cases} 2^{-i}, & \mbox {fuer} i>j \\ 2^{i-1}, & \mbox{fuer } i<=j \end{cases} [/mm]

Hey, ich komm bei der Aufgabe nicht weiter. Hat da jemand einen Trick für mich, das strikte Zeilensummenkriterium passt ja schonmal nicht. Kann man das auch für die Spalten machen? Dann müsste es doch eigentlich stimmen oder? Oder gibt es noch einen anderen Satz den man anwenden kann?
Danke schonmal für eure hilfe.

        
Bezug
Gesamtschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Fr 11.03.2011
Autor: max3000

Hast du mal geprüft, ob die Matrix diagonaldominant ist?
Einfach mal in einer Zeile alles außer die Diagonale zusammenrechnen.
Gilt dann

[mm] $\summe_{j=0,j\ne i}^m [/mm] a_ij < [mm] a_{ii}$? [/mm]

Wenn das nicht geht musst du etwas tiefer reingehen.
Die Konvergenzbeweise von allen Splitting-Verfahren verwenden den Banachschen Fixpunktsatz.

Dazu betrachtest du die Fixpunktgleichung

[mm] \hat{x}=D^{-1}(D-A)x [/mm]

und schaust nach, ob der Operator [mm] T:=D^{-1}(D-A) [/mm] bezüglich der Spektralnorm kontrahierend ist. Dann bist du fertig.

Versuch das ganze erstmal selber und gib uns bescheid ob einer dieser Ansätze erfolgreich war.


Jetzt wollt ich grad posten, aber ich sehe grad, dass [mm] D^{-1}(A-D)<1 [/mm] genau das selbe ist wie die Diagonaldominanz.
Also vergiss das mit dem Banach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]