matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGesetz der großen Zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Gesetz der großen Zahlen
Gesetz der großen Zahlen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesetz der großen Zahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:47 So 26.08.2012
Autor: anncharlot

Hallo zusammen, heute geht es mus der schwache und das starke gesetz der großen zahlen und insbesondere den unterschied zwischen den beiden.
sein X der betrag der zentrierten zufallsvariablen,

schwaches gesetz:
für eine folge von unabhängigen (bzw. unkorrelerten) zufallsvariablen mit gleichem erwartungswert und beschränkter (also existierender) Varianz gilt
lim P(X>e)=0 mit n gegen unendlich
die aussage hier ist also das für ein sehr großen stichprobenumfang sich das arithmetische mittel der zntrioerten zv gegen null konvergiert. das heißt jedoch nicht, dass z.B. bei einem münzwurfexperiment bei dem nach 10 würfen 3 mal kopf und 7 mal zahl gefallen ist sich dieser "unterschied" irgendwann ausgleichen wird also in zukunft häufiger kopf fällt.
man spricht von stochastischer konvergenz.

starkes gesetz:
für eine folge von unabhängig und identisch verteilten zv mit gleichem erwartungswert und beschränkter varianz gilt:
P(lim sup X =o)=1
da wir es mit mengen zu tun haben gibt hier der lim sup X die menge aller elemente aus der ereignissmenge an welche in unendlich vielen [mm] X_i [/mm] liegen.

hier kommt jetzt mein erstes problem: bedeuted das soviel wie: die wahrscheinlichkeit dasfür das es kein element gibt welches in allen stichproben enthalten ist ist 1 oder muss ich in dieser formulierung den lim sup X doch eher also den oberen grenzwert einer folge verstehen (also nicht als eine folge von mengen)

das zweite problem das ich habe ist das in beiden gesetzen immer angenommen wird dass der erwartungswert aller zv gleich sein muss. kann dieser denn nicht auch verschieden sein und die aussage würde für hinreichend große stichproben immernoch gültig bleiben?

lg ann

Diese Frage wurde schon in einem anderen Forum gestellt:
http://www.matheboard.de/thread.php?threadid=498656

        
Bezug
Gesetz der großen Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 30.08.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]