matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGew. Differentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Gew. Differentialgleichung
Gew. Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gew. Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Do 23.04.2020
Autor: makke306

Ermitteln Sie für folgendes Störglied einen Lösungsansatz für eine partikuläre Lösung der inhomgenen Differentialgleichung.

Aufgabe
y''+2y'+y=g(x)
[mm] g(x)=2*e^x+cosx [/mm]






Habe für die Homogene Lösung [mm] x_h= c_1*e^{-x}+c_2x*e^{-x} [/mm] herausbekommen.
Aber welchen Ansatz wähle ich für die Partikuläre Lösung?

        
Bezug
Gew. Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Do 23.04.2020
Autor: fred97


> [mm]y''+2y'+y=2*e^x+cosx[/mm]
>  
>
> Habe für die Homogene Lösung [mm]x_h= c_1*e^{-x}+c_2x*e^{-x}[/mm]
> herausbekommen.
>  Aber welchen Ansatz wähle ich für die Partikuläre
> Lösung?


Bestimme eine partikuläre Lösung [mm] y_1 [/mm] von [mm]y''+2y'+y=2*e^x[/mm] und bestimme eine partikuläre Lösung [mm] y_2 [/mm] von [mm]y''+2y'+y= \cos x[/mm].

Dann ist [mm] $y_p:= y_1+y_2$ [/mm] eine partikuläre Lösung von [mm]y''+2y'+y=2*e^x+ \cos x[/mm].



Bezug
                
Bezug
Gew. Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 23.04.2020
Autor: makke306

Ah ok. Ich habe als Lösung [mm] y=c_1e^{-x}+c_2xe^{-x}+\frac{e^x+\sin \left(x\right)}{2} [/mm] herausbekommen.

Allerdings stimmt dies nicht mit der Lösung überein die mir mein Prof gegegen hat.

Die Lösung lautet da so:
c = 1, b = 1; Weder 1 noch jß = j sind Lösungen der charakteristischen Gleichung => [mm] y_p [/mm] = A * [mm] e^x [/mm] + B  sinx + C*cos x

Habe keine Ahnung wieso da diese Lösung angegeben ist.

Bezug
                        
Bezug
Gew. Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Do 23.04.2020
Autor: fred97


> Ah ok. Ich habe als Lösung
> [mm]y=c_1e^{-x}+c_2xe^{-x}+\frac{e^x+\sin \left(x\right)}{2}[/mm]
> herausbekommen.

Das stimmt, [mm] y_p(x)=\frac{e^x+\sin \left(x\right)}{2} [/mm] ist eine spezielle Lösung, wie man sofort nachrechnen kann.

>  
> Allerdings stimmt dies nicht mit der Lösung überein die
> mir mein Prof gegegen hat.

Das ist ja auch kein Wunder, eine spezielle Lösung ist nicht eindeuteig bestimmt !

Z.B. sind

  [mm] y=e^{-x}+xe^{-x}+\frac{e^x+\sin \left(x\right)}{2} [/mm]

oder

  [mm] y=2020e^{-x}-1234567xe^{-x}+\frac{e^x+\sin \left(x\right)}{2} [/mm]

ebenfalls spezielle Lösungen der DGL.

>  
> Die Lösung lautet da so:
>  c = 1, b = 1; Weder 1 noch jß = j sind Lösungen der
> charakteristischen Gleichung => [mm]y_p[/mm] = A * [mm]e^x[/mm] + B  sinx +
> C*cos x
>  
> Habe keine Ahnung wieso da diese Lösung angegeben ist.


Bezug
                                
Bezug
Gew. Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 24.04.2020
Autor: makke306

Aber dann stimmt da diese Lösung? :

c = 1, b = 1; Weder 1 noch jß = j sind Lösungen der
charakteristischen Gleichung => $ [mm] y_p [/mm] $ = A * $ [mm] e^x [/mm] $ + B  sinx + C*cos x

Woher kommt da jß = j?

Bezug
                                        
Bezug
Gew. Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Fr 24.04.2020
Autor: leduart

Hallo
gemeint ist j also die imaginäre Einheit mt [mm] j\beta [/mm] vielleicht -j oder einfach ein vielfaches von j? da da ja steht  [mm] j\beta [/mm] =j ist [mm] \beta=1 [/mm]
Gruß ledum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]