matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenGewinnoptimierung im Monopol
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Gewinnoptimierung im Monopol
Gewinnoptimierung im Monopol < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnoptimierung im Monopol: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:50 Do 22.11.2018
Autor: sancho1980

Aufgabe
Die Nachfragefunktion für eine Hautcreme sei D(p) = 200 - 4p, wobei p der Preis ist. Die Herstellerkosten C(x) ergeben sich folgendermaßen aus der Menge x (in Litern): Fixkosten von 75 Litern plus Kosten von 1 € pro Liter, d.h.:

C(x) = 300 + x für 0 [mm] \le [/mm] x [mm] \le [/mm] 75
C(x) = 600 + x für 75 < x [mm] \le [/mm] 150
C(x) = 900 + x für 150 < x [mm] \le [/mm] 200

Maximieren Sie den Gewinn P(x) = [mm] D^{-1}(x)x [/mm] - C(x)

Hallo

Also wenn ich das richtig sehe, dann gilt

[mm] D^{-1}(x) [/mm] = 50 - [mm] \bruch{x}{4} [/mm]

Dann gilt für P(x) = [mm] -\bruch{1}{4}x^2 [/mm] + 49x - F(x)

wobei F(x) die Fixkosten sind, also

F(x) = 300 für 0 [mm] \le [/mm] x [mm] \le [/mm] 75
F(x) = 600 für 75 < x [mm] \le [/mm] 150
F(x) = 900 für 150 < x [mm] \le [/mm] 200

Dann ist [mm] P^1(x) [/mm] = [mm] -\bruch{1}{2}x [/mm] + 49 mit einer Nullstelle bei x = 98.

Aus [mm] P^2(x) [/mm] = [mm] -\bruch{1}{2} [/mm] folgt, dass P(98) ein Maximum ist.
Wegen F(98) = 600 ist P(98) = 1899.

Mein Buch gibt mir aber wieder mal eine gaaanz andere Lösung vor ... hmmm

        
Bezug
Gewinnoptimierung im Monopol: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Do 22.11.2018
Autor: leduart

Hallo
man muss hier genauer überlegen, das relative Maximum lieg bei 98, aber den gleichen Gewinn hat man bei x=63, und deshalb einen höheren bei x=75. die 2 Punkte auf grün.
sie dir mal die 3 Kurven an grün F=300, rot F=600 blau F=900
Es handelt sich also hier um ein Randmaximum.
Gruß leduart
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]