matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikGleichheit von Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Gleichheit von Formel
Gleichheit von Formel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit von Formel: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 22:02 Do 21.04.2005
Autor: ivopivo

Für eine Aufgabe, die ich mit der Maximierung der W. beschäftigt bei einem Zug eine weisse Kugel zu ziehen, wobei man sich zwischen zwei Urnen entscheiden muss.

Zu zeigen ist die folgende Gleichheit, wodurch die Aufgabe dann auch gelöst wäre:

1 - [mm] \bruch{a-c}{a+b-c} [/mm] - [mm] \bruch{c}{c+d} [/mm] - [mm] \bruch{a-c}{a+b-c-d} [/mm] = [mm] \bruch{d}{a+b-c-d} (\bruch{a+b}{c+d} [/mm] - 1 - [mm] \bruch{a-c}{a+b-c}) [/mm]

Ich war schon so verzweifelt, dass ich sogar schon versucht habe einfach alles auszumultiplizieren; beinahe klappte es auch, nur am ANfang stimmte eine kleine Summe nicht überein, ich habe mich also iergendwo verrechnet.

Fallen euch vielleicht einge gute Tipps ein, wie man diese Gleichheit zeigen könnte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichheit von Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 22.04.2005
Autor: Zwerglein

Hi, ivopivo,

wenn Du rechts und links den Hauptnenner bildest, dann stimmt der schon mal überein.
Man muss also "nur noch" beweisen, dass der dabei entstehende Zähler rechts und links derselbe ist.
Ich fang mal links an:
(Bitte auf Rechenfehler achten!)
(a+b-c-d)(a+b-c)(c+d) - (a-c)(a+b-c-d)(c+d) - c(a+b-c-d)(a+b-c) - (a-c)(a+b-c)(c+d)
= (a+b-c-d)(c+d)(a+b-c-a+c) - (a+b-c)(c(a+b-c-d)) + (a-c)(c+d))
= (a+b-c-d)(c+d)*b - (a+b-c)(ac+bc [mm] -c^{2}-cd +ac+ad-c^{2}-cd) [/mm]

Hmm, irgendwie hatt' ich gehofft, dass sich die letzte Klammer stärker vereinfachen lässt!
Ich brech' hier erst mal ab und versuch's später nochmal!

Bezug
                
Bezug
Gleichheit von Formel: Die Aufgabe ist gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Sa 23.04.2005
Autor: ivopivo

Vielen Dank für deine Mühe, aber ich habe die Aufgabe jetzt endlich gelöst, nachdem ich stundenlang nach einer LÖsung gesucht habe.

EIn guter Tipp ist es die 1 zu (c+d) / (c+d) umzuformen. dann einfach (a-c) ausklammern und dann hat man die LÖsung schon fast.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]