matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGleichmäßige Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Gleichmäßige Konvergenz
Gleichmäßige Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz: ...bei Funktionenfolge
Status: (Frage) beantwortet Status 
Datum: 21:41 Do 21.04.2011
Autor: sh4nks

Aufgabe
Seien M1 = [0, 1] und M2 = [1, 2] und [mm] g_{n}(x) [/mm] = [mm] \bruch{nx}{1 +n^{2} * x^{2}} [/mm]  , n Element natürliche Zahlen
. Berechnen Sie die Grenzfunktion
g(x) von gn(x) und entscheiden Sie, ob [mm] g_{n}(x) [/mm] auf M1 bzw. M2 gleichmäßig gegen g(x)
konvergiert.


Hallo zusammen,

mein Ansatz: die Funktion [mm] g_{n}(x) [/mm] konvergiert punktweise gegen g(x)=0 da lim  [mm] g_{n}(x) [/mm] = 0 [mm] \forall [/mm] x.

Gleichmäßige Konvergenz könnte man zB dadurch zeigen, dass der Betrag von [mm] g_{n}(x) [/mm] - 0 kleiner ist als die Folge [mm] a_{n}= \bruch{1}{n}. [/mm]

Stimmt das so? Die beiden Intervalle in der Angabe irritieren mich...

Im voraus vielen Dank!

        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Fr 22.04.2011
Autor: fred97

1. [mm] (g_n) [/mm] ist auf [mm] M_1 [/mm] nicht glm. konvergent, denn [mm] g_n(1/n)=1/2 [/mm]  für jedes n

2. [mm] (g_n) [/mm] ist auf [mm] M_2 [/mm] glm. konvergent. Zeige:

             $0 [mm] \le g_n(x) \le [/mm] 1/n$ für jedes n und jedes x [mm] \in M_2. [/mm]

FRED

Bezug
                
Bezug
Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 22.04.2011
Autor: sh4nks

Vielen Dank, habe aber gerade sehen müssen dass das Programm annimmt, die ohne die Eingabenhilfen unten erstellt werden.

Die Funktionenfolge hat in Wirklichkeit ein [mm] n^{2} [/mm] im Nenner, gibt es hier immer noch keine gleichmäßige Konvergenz in beiden Intervallen?

Gruß Markus

Bezug
                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 22.04.2011
Autor: leduart

Hallo
hast du denn mal [mm] x_n=1/n [/mm] eingesetzt
gruss leduart


Bezug
                                
Bezug
Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Fr 22.04.2011
Autor: sh4nks

Wenn ich für x 1/n einsetzen würde, bekäme ich 1/2 heraus... wieso muss ich für x diese Folge einsetzen?

Gruß Markus

Bezug
                                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Fr 22.04.2011
Autor: leduart

Hallo
du musst nicht! aber so ist am schnellsten zu sehen dass die fkt nicht glm konvergiert in [0,1] denn für jes n findest du ein x, sodass [mm] |f_n(x)-f|=1/2> \epsilon, [/mm] falls [mm] \epsilon<0.5 [/mm]
gruss leduart


Bezug
                                                
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mo 25.04.2011
Autor: sh4nks

Einleuchtend, danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]