matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Gleichung
Gleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 16.03.2005
Autor: nitro1185

Hallo!!

Ich hätte eine Frage an jene Differentialgleichung:

P´=P*(a-b*ln(P))  ges. Lösung P(t)

Mein Ansatz: Q=ln(p)

=> P´- P*a+b*P*Q So mein Ansatz der normalerwiese bei solchen Typen funktioniert geht hier nicht wegn dem Q!!!

Wenn ich folgendes mache:

[mm] \bruch{P'}{P}= [/mm] (a-b*Q) / Integrieren nach dt

ln(P)=  [mm] \integral_{(a-b*Q) dt} [/mm]

So das geht nicht, denk ich halt, da das Integtral von P abhängt!!

Was soll ich da denn ,machen???

MFG Daniel   Danke im Voraus

        
Bezug
Gleichung: Trennung der Variablen
Status: (Antwort) fertig Status 
Datum: 20:37 Mi 16.03.2005
Autor: moudi

Hallo Daniel

Da in deiner DGL die Variable t gar nicht vorkommt, kann man sie sicher mit der Methode der Trennung der Variablen lösen (separierbare DGL).

Also [mm] $\frac{P'}{P(a-b\ln(P))}=1$. [/mm]

Integrieren ergibt: [mm] $\int\frac{1}{P(a-b\ln(P))}\,dP=\int \,dt$ [/mm] und daraus

[mm] $\frac{-\ln(|-a+b\ln(P)|)}{b}=t+C$ [/mm] und nach P(t) aufgelöst

[mm] $P(t)=\exp(\frac{a+C'e^{-b t}}{b})$, [/mm] wobei [mm] $C'=\pm e^{-bC}$ [/mm] ist.

mfG Moudi

Bezug
                
Bezug
Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mi 16.03.2005
Autor: nitro1185

Dankeschön.Ich hebe so einen Ansatz gehabt, aber nicht gewusst dass ich so intergrieren kann.mfg daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]