matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisGleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Gleichung
Gleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung: 4. und 5.Grades
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 01.10.2005
Autor: der_puma

hi,

hab ma eine frage zum lösen von gleichungen.wie löst man genau eine gleichung 4. und 5. grades? ich weiss man muss eine lösung vorgeben habe ode erraten un dann polynomdivsion oder so.kann mir da jemand das mal genau sagen un auch ein beispiel geben ?

danke
christopher

        
Bezug
Gleichung: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 01.10.2005
Autor: MathePower

Hallo der_puma,

> hab ma eine frage zum lösen von gleichungen.wie löst man
> genau eine gleichung 4. und 5. grades? ich weiss man muss
> eine lösung vorgeben habe ode erraten un dann
> polynomdivsion oder so.kann mir da jemand das mal genau
> sagen un auch ein beispiel geben ?

für Gleichungen ab 5. Grades gibt es keine geschlossenen Formeln.
Da muß man ein i.d.R. ein Näherungsverfahren anwenden, um die Nullstellen zu finden.

Gleichungen 4. Grades sind zwar formal lösbar. Diese Formeln sind aber höchst umständlich.

[mm]a\;x^{4}\;+\;b\;x^3\;+\;c\;x^2\;+\;d\;x\;+\;e\;=\;0[/mm]

Dies ist äquivalent mit (Division durch a):

[mm]x^{4}\;+\;A\;x^3\;+\;B\;x^2\;+\;C\;x\;+\;D\;= \;0[/mm]

Durch die Substitution [mm]x\;=\;y\;-\frac{A}{4}[/mm] geht die Gleichung über in:

[mm]y^{4}\;+\;p\;y^2\;+\;y\;x\;+\;r\;= \;0[/mm]

welche sich als Differenz zweier Quadrate darstellen läßt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; + \;\left( {p\; - \;\eta } \right)\;y^2 \; + \;q\;y\; + \;\left( {r\; - \;\frac{{\eta ^2 }} {4}} \right) \hfill \\ = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\left( {\eta \; - \;p} \right)\;y^2 \; - \;q\;y\; + \;\left( {\;\frac{{\eta ^2 }} {4}\; - \;r} \right)} \right) \hfill \\ \end{gathered} [/mm]

Der letzte Klammerausdruck muß ein vollständiges Quadrat sein. Dies ist gewährleistet, wenn [mm]\eta[/mm] gemäß

[mm]\left( {\eta \; - \;p} \right)\;\left( {\;\eta ^2 \; - \;4\;r} \right)\; = \;q^2[/mm]

gewählt wird. Hierzu ist das Lösen einer kubischen Gleichung erforderlich.

Dann folgt:

[mm] \begin{gathered} y^4 \; + \;p\;y^2 \; + \;q\;y\; + \;r\; = \;\left( {y^2 \; + \;\frac{\eta } {2}} \right)^2 \; - \;\left( {\alpha \;y\; + \;\beta } \right)^2 \hfill \\ = \;\left( {y^2 \; + \;\alpha \;y\; + \;\beta \; + \;\frac{\eta } {2}} \right)\;\left( {y^2 \; - \;\alpha \;y\; - \;\beta \; + \;\frac{\eta } {2}} \right) \hfill \\ \end{gathered} [/mm]

mit

[mm] \begin{gathered} \alpha ^2 \; = \;\eta \; - \;p \hfill \\ \beta ^2 \; = \;\frac{{\eta ^2 }} {4}\; - \;r \hfill \\ \end{gathered} [/mm]

Die Lösungen der reduzierten Gleichung 4. Grades ergeben sich dann als Lösungen der beiden quadratischen Gleichungen.

Gruß
MathePower



Bezug
                
Bezug
Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 01.10.2005
Autor: der_puma

hi,

schonam danke,aber geht das nicht leichert ?

ich mein eine gleichung 4.grades is doch darstellbar als
(x-x1) (x-x2) (x-x3) (x-x4)
also geht es nicht auch dass man eine gleichung 4.grades ganz einfach duch (x²-(eine lösung)) teil un dann ne quadratische gleichung löst????

gruß christopher

Bezug
                        
Bezug
Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 01.10.2005
Autor: Zwerglein

Hi, Puma,

trägst Du eigentlich auch mal adidas-Schuhe?

Aber zu Deiner Frage: Mathe-Power hat Dir gezeigt, wie man vorgehen würde, wenn man keine Lösungen raten kann. Zum Glück kommt das selten vor! Daher hier ein Beispiel für eine Gleichung 4. Grades, wo Du "auf übliche Art" zum Ziel kommst:
[mm] x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3 = 0
Du rätst zunächst z.B. [mm] x_{1} [/mm] = -1, denn:
[mm] (-1)^{4} [/mm] - [mm] 5*(-1)^{3} [/mm] + [mm] 4*(-1)^{2} [/mm] + 7*(-1) - 3 = 0
Daher muss die Polynomdivision
[mm] (x^{4} [/mm] - [mm] 5x^{3} [/mm] + [mm] 4x^{2} [/mm] + 7x - 3) : (x + 1) aufgehen.
Ergebnis dieser Division: [mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3

Nun musst Du diesen Term =0 setzen:
[mm] x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3 = 0.

Wieder kannst Du eine Lösung raten; diesmal ist es: [mm] x_{2} [/mm] = 3, denn:
[mm] 3^{3} [/mm] - [mm] 6*3^{2} [/mm] + 10*3 - 3 = 0.

Erneute Polynomdivision:
[mm] (x^{3} [/mm] - [mm] 6x^{2} [/mm] + 10x - 3) : (x - 3) = [mm] x^{2} [/mm] - 3x + 1

Die restlichen Lösungen kriegst Du nun mit p/q-Formel (oder auch mit der "Mitternachtsformel"):
[mm] x^{2} [/mm] - 3x + 1 = 0

[mm] x_{3/4} [/mm] = [mm] \bruch{3 \pm \wurzel{5}}{2} [/mm]

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]