matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGleichung einer Ebenen,Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Gleichung einer Ebenen,Geraden
Gleichung einer Ebenen,Geraden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung einer Ebenen,Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Di 04.12.2007
Autor: starbak05

Hallo,
ich muss folgende Aufgabe lösen:
Die drei Punkte A=(0;0;0), B=(1;4;-3) und C=(-1;2;3) sind Eckpunkte des Dreiecks ABC. Dieses Dreieck liegt in Ebene E2.
1.) Geben Sie eine Gleichung dieser Ebene an.
2.) Die Dreiecksseite CB liegt auf der Geraden g3. Geben sie für diese Gerade eine Gleichung an.

Ich bin mir nicht sicher wie ich diese Gleichungen aufstellen soll.

Und noch eine kurze Frage. Bei einem Dreieck wie diesem ist ja z.B.
Seite x = Seite z-y. Wie weiß ich bei anderen Bezeichungen oder vertauschten Bezeichungen welchen Vektor ich von welchem abziehen muss. Also ob x=z-y oder-c ist.  


Gruss Arne

        
Bezug
Gleichung einer Ebenen,Geraden: Parameterform
Status: (Antwort) fertig Status 
Datum: 14:10 Di 04.12.2007
Autor: Roadrunner

Hallo Arne!


Eine Ebenengleichung aus 3 gegebenen Punkten $A_$ , $B_$ und $C_$ lässt sich z.B. in Parameterform aufstellen:
$$E \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \overrightarrow{OA}+\kappa*\overrightarrow{AB}+\lambda*\overrightarrow{AC} [/mm] \ = \ [mm] \vec{a}+\kappa*\left(\vec{b}-\vec{a}\right)+\lambda*\left(\vec{c}-\vec{a}\right)$$ [/mm]

Analog zur Geradengleichung:
$$g \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \overrightarrow{OA}+\kappa*\overrightarrow{AB} [/mm] \ = \ [mm] \vec{a}+\kappa*\left(\vec{b}-\vec{a}\right)$$ [/mm]


> Und noch eine kurze Frage. Bei einem Dreieck wie diesem ist
> ja z.B.
> Seite x = Seite z-y. Wie weiß ich bei anderen Bezeichungen
> oder vertauschten Bezeichungen welchen Vektor ich von
> welchem abziehen muss. Also ob x=z-y oder-c ist.  

Im Prinzip ist das egal. Aber wenn ich nun den Vektor von $A_$ nach $B_$ ermitteln will, muss ich immer "Endpunkt minus Anfangspunkt" rechnen:
[mm] $$\overrightarrow{AB} [/mm] \ = \ [mm] \vec{b}-\vec{a}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Gleichung einer Ebenen,Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Di 04.12.2007
Autor: starbak05

Danke. So müsste ich weiter kommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]