matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesGleichung loesen'
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Gleichung loesen'
Gleichung loesen' < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung loesen': Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Mi 25.06.2008
Autor: mempys

Hallo! Ich komme gerade bei einer Aufgabe nicht weiter,hoffe ihr koennt mir helfen..
Ich soll die folgende Gleichung nach x aufloesen  und dabei die rechenregel der exponentialfunktion anwenden...

[mm] 2e^{x-1}-e^{3-x}=e [/mm] ich bin jetzt soweit das ich nach der substitotion und anwendung der PQ Formel folgendes rausbekiommen habe fuer [mm] x_{1},x_{2}.. [/mm]

[mm] x_{1}= e^2 [/mm] , [mm] x_{2}= -\bruch{e^2}{2} [/mm]

koenntet ihr mir jetzt noch bei der Ruecksubstitotion helfen??
mfg mempys

        
Bezug
Gleichung loesen': Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 25.06.2008
Autor: M.Rex

Hallo

Was hast du denn Substituiert?
Um auf die p-q-Formel zu gkommen, musst du irgendwas der art [mm] z:=e^{x} [/mm] substituiert haben, und damt [mm] z²=e^{2x} [/mm]

Marius


Bezug
        
Bezug
Gleichung loesen': Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mi 25.06.2008
Autor: fred97

Du hast richtig substituiert: $ t = [mm] e^x [/mm] $ .

Dann erhälst Du eine quadratische Gleichung für t mit den Lösungen

$ [mm] t_{1}= e^2 [/mm] $ und $ [mm] t_{2}= -\bruch{e^2}{2} [/mm] $

Da die Exponentialfunktion überall positiv ist, kommt nur  $ [mm] t_{1}= e^2 [/mm] $  in Frage.
Also  $ [mm] e^2 [/mm] = [mm] e^x [/mm] $, somit ist x = 2.

FRED



Bezug
                
Bezug
Gleichung loesen': Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mi 25.06.2008
Autor: mempys

D.h. in meiner Lösungsmenge steht nur [mm] \IL= \{2\} [/mm]

Warum genau muss die Exponentialfunktion positiv sein??

mfg mempys

Bezug
                        
Bezug
Gleichung loesen': Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mi 25.06.2008
Autor: Al-Chwarizmi


> Warum genau muss die Exponentialfunktion positiv sein??

Wenn man eine positive Zahl mit einem beliebigen (reellen)
Exponenten potenziert, kommt immer ein positives Ergebnis
heraus.

e  ist positiv, also ist auch  [mm] e^x [/mm]  positiv für alle x [mm] \in \IR [/mm]

falls du die Exponentialkurve  [mm] y=e^x [/mm]  noch nie gezeichnet
haben solltest, dann wäre es vielleicht Zeit, dies nachzuholen...      ;-)


LG     al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]