matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichung umstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Systems of linear equations" - Gleichung umstellen
Gleichung umstellen < Systems of linear equations < Uni-LinA u. Algebra < University < Maths <
View: [ threaded ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ all forums  | ^ Tree of Forums  | materials

Gleichung umstellen: Was ist richtig?
Status: (Question) answered Status 
Date: 13:07 Sa 02/07/2016
Author: fse

Aufgabe
Hallo zusammen,

In meinem Aufschreib steht:
[mm] I_D=I_{DSS}*(1-\bruch{U_{GS}}{U_P})^2 [/mm]

folgt
[mm] U_{GS}=U_P(1-\wurzel{{\bruch{I_D}{I_{DSS}}}}) [/mm]

Wenn ich jedoch die obere Gleichung umstelle komme ich auf:
[mm] U_{GS}=U_P(\wurzel{{\bruch{I_D}{I_{DSS}}}}-1) [/mm]
Was ist den nun richtig und wo ist ggf. mein Fehler?

Grüße Fse

P.S. bin mir unsicher in welche Kategorie diese Frage richtigerweise gehört hätte?

        
Bezug
Gleichung umstellen: Antwort
Status: (Answer) finished Status 
Date: 13:17 Sa 02/07/2016
Author: Gonozal_IX

Hiho,

>  Wenn ich jedoch die obere Gleichung umstelle komme ich
> auf:
>  [mm]U_{GS}=U_P(\wurzel{{\bruch{I_D}{I_{DSS}}}}-1)[/mm]
>  Was ist den nun richtig und wo ist ggf. mein Fehler?

ohne zu zeigen, wie du umgeformt hast, kann man das leider nicht beantworten!
Zeige deine Umformungsschritte.

Gruß,
Gono

Bezug
        
Bezug
Gleichung umstellen: Antwort
Status: (Answer) finished Status 
Date: 13:38 Sa 02/07/2016
Author: Al-Chwarizmi


> Hallo zusammen,
>  
> In meinem Aufschreib steht:
>  [mm]I_D=I_{DSS}*(1-\bruch{U_{GS}}{U_P})^2[/mm]
>  
> folgt
>  [mm]U_{GS}=U_P(1-\wurzel{{\bruch{I_D}{I_{DSS}}}})[/mm]
>  Wenn ich jedoch die obere Gleichung umstelle komme ich
> auf:
>  [mm]U_{GS}=U_P(\wurzel{{\bruch{I_D}{I_{DSS}}}}-1)[/mm]
>  Was ist den nun richtig und wo ist ggf. mein Fehler?
>  
> Grüße Fse



Hallo

Gonozal hat schon geantwortet.
Beachte bei der Aufgabe auch noch, dass man aus der Gleichung

[mm]I_D=I_{DSS}*(1-\bruch{U_{GS}}{U_P})^2[/mm]

den Wert des Bruches  [mm]\bruch{U_{GS}}{U_P}[/mm]  ohne Zusatzkenntnisse
nicht eindeutig ermitteln kann.  Derartige Zusatzkenntnisse
kann man möglicherweise aus der dahinter steckenden
praktischen Aufgabe ableiten. Was bedeuten zum Beispiel
die Konstanten  [mm] U_{GS} [/mm]  und  [mm] {U_P} [/mm]  ? Was kann man über ihre
Vorzeichen und ihre relativen Größen aussagen ?

LG ,   Al-Chwarizmi

Bezug
                
Bezug
Gleichung umstellen: Frage (beantwortet)
Status: (Question) answered Status 
Date: 14:28 Sa 02/07/2016
Author: fse

Mein Rechenweg:
[mm] I_D=I_{DSS}\cdot{}(1-\bruch{U_{GS}}{U_P})^2 [/mm]


[mm] \bruch{I_D}{I_{DSS}}=(1-\bruch{U_{GS}}{U_P})^2 [/mm]

[mm] \wurzel{ \bruch{I_D}{I_{DSS}}}=(1-\bruch{U_{GS}}{U_P}) [/mm]

[mm] \wurzel{ \bruch{I_D}{I_{DSS}}}-1=(-\bruch{U_{GS}}{U_P}) [/mm]

[mm] U_P*(\wurzel{ \bruch{I_D}{I_{DSS}}}-1)=-{GS} [/mm]

[mm] U_{GS}=U_P(-\wurzel{{\bruch{I_D}{I_{DSS}}}}+1) [/mm]

Somit komme ich doch auf die richtige Lösung...allerdings ist mir gerade auch aufgefallen dass ich daraus ja auch eine Quadratische Gleichung erhalten kann welche ja dann zwei Lösungen hätte!Somit ist das oben wohl nicht ganz richtig!
Im Anhang noch die Kennlinien die mit der Formel beschrieben werden sollen.
Meine Frage wäre jetzt nun kann ich eine Formel für [mm] U_{GS} [/mm] festlegen welche für den n-Kanal FET gilt und eine die für den p-Kanal gilt? Oder muss ich immer die Quadratische Gleichung lösen und dann schauen welcher Fall zutrifft? Bin gerade etwas verwirrt!
[Dateianhang nicht öffentlich]

attachments:
Attachment # 2 (Type: png) [nicht öffentlich]
Bezug
                        
Bezug
Gleichung umstellen: Antwort
Status: (Answer) finished Status 
Date: 15:05 Sa 02/07/2016
Author: Al-Chwarizmi


> Mein Rechenweg:
>   [mm]I_D=I_{DSS}\cdot{}(1-\bruch{U_{GS}}{U_P})^2[/mm]
>
>
> [mm]\bruch{I_D}{I_{DSS}}=(1-\bruch{U_{GS}}{U_P})^2[/mm]        (Voraussetzung:   [mm] I_{DSS} [/mm] ≠ 0  !)
>
> [mm]\wurzel{ \bruch{I_D}{I_{DSS}}}\ =\ \red{\pm}\,(1-\bruch{U_{GS}}{U_P})[/mm]        (Voraussetzung:   [mm] \bruch{I_D}{I_{DSS}} [/mm] ≥ 0  !)

Wie durch das  [mm] \red{\pm} [/mm]  - Symbol  angedeutet, muss man hier zwei
mögliche Vorzeichenvarianten berücksichtigen. Dies entspricht der
korrekten und vollständigen Auflösung der quadratischen Gleichung.

Welche Lösung(en) der konkreten Situation entspricht bzw. entsprechen,
muss aus der Betrachtung des konkreten Problems hervorgehen.

Da ich beim Thema Transistoren-Elektronik nicht so bewandert bin
(insbesondere sind mir die genauen Bedeutungen der Parameter
nicht bekannt), muss ich hier im Moment passen ...    

  

> [mm]\wurzel{ \bruch{I_D}{I_{DSS}}}-1=(-\bruch{U_{GS}}{U_P})[/mm]
>  
> [mm]U_P*(\wurzel{ \bruch{I_D}{I_{DSS}}}-1)=-{GS}[/mm]
>  
> [mm]U_{GS}=U_P(-\wurzel{{\bruch{I_D}{I_{DSS}}}}+1)[/mm]
>  
> Somit komme ich doch auf die richtige Lösung...allerdings
> ist mir gerade auch aufgefallen dass ich daraus ja auch
> eine Quadratische Gleichung erhalten kann welche ja dann
> zwei Lösungen hätte!Somit ist das oben wohl nicht ganz
> richtig!
>  Im Anhang noch die Kennlinien die mit der Formel
> beschrieben werden sollen.
>  Meine Frage wäre jetzt nun kann ich eine Formel für
> [mm]U_{GS}[/mm] festlegen welche für den n-Kanal FET gilt und eine
> die für den p-Kanal gilt? Oder muss ich immer die
> Quadratische Gleichung lösen und dann schauen welcher Fall
> zutrifft? Bin gerade etwas verwirrt!
>  [Dateianhang nicht öffentlich]


Bezug
                                
Bezug
Gleichung umstellen: Frage (beantwortet)
Status: (Question) answered Status 
Date: 16:11 Sa 02/07/2016
Author: fse

$ [mm] I_D=I_{DSS}\cdot{}(1-\bruch{U_{GS}}{U_P})^2 [/mm] $
Bedeutet somit dass es die folgenden zwei lösungen für [mm] U_{GS} [/mm] gibt?

$ [mm] U_{GS}=U_P(1-\wurzel{{\bruch{I_D}{I_{DSS}}}}) [/mm] $

$ [mm] U_{GS}=U_P(1+\wurzel{{\bruch{I_D}{I_{DSS}}}}) [/mm] $

Grüße fse

Bezug
                                        
Bezug
Gleichung umstellen: Antwort
Status: (Answer) finished Status 
Date: 18:30 Sa 02/07/2016
Author: Gonozal_IX

Hiho,

> [mm]I_D=I_{DSS}\cdot{}(1-\bruch{U_{GS}}{U_P})^2[/mm]
>  Bedeutet somit dass es die folgenden zwei lösungen für
> [mm]U_{GS}[/mm] gibt?
>  
> [mm]U_{GS}=U_P(1-\wurzel{{\bruch{I_D}{I_{DSS}}}})[/mm]
>  
> [mm]U_{GS}=U_P(1+\wurzel{{\bruch{I_D}{I_{DSS}}}})[/mm]
>  

mathematisch gesehen: Ja.

physikalisch gesehen: Das musst du beantworten können!
Das hängt halt davon ab, welche der obigen Lösungen "Sinn" machen.

Gelte bspw. immer [mm] $U_{GS} \ge U_P$ [/mm] so käme nur die zweite Lösung in Betracht.

Gilt die umgekehrte Relation, nur die zweite.…

Oder: Ist [mm] $\bruch{I_D}{I_{DSS}} [/mm] > 1$ aber soll [mm] $U_{GS} [/mm] > 0$ gelten, so würde die erste Lösung wegfallen…

Wie du siehst: Das hängt von den Gegebenheiten ab.

Gruß,
Gono

Bezug
View: [ threaded ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 5h 54m 9. fred97
UAnaR1FolgReih/Absolute Konvergenz
Status vor 11h 43m 5. hase-hh
UAnaR1FolgReih/Zinseszinsrechng stetige Verzi
Status vor 12h 29m 9. hase-hh
UAnaR1FolgReih/Wert einer Reihe
Status vor 1d 6h 22m 2. fred97
UAnaR1/Riemann Summe
Status vor 1d 9h 08m 11. TS85
MaßTheo/Sigma-Algebra = P(X)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]