matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGleichung zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichung zeigen
Gleichung zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Mi 21.07.2010
Autor: nooschi

Aufgabe
Es sei $g: [mm] [0,\infty)\times \IR\rightarrow\IR^2, (r,\phi)\mapsto(r\cos(\phi),r\sin(\phi))$, [/mm] $H:= [mm] (-\IR^+)\times\{0\}$ [/mm] Verifiziere:
Sind [mm]X[/mm] offen in [mm]\IR^2\backslash H[/mm] und [mm] $f\in C^2(X,\IR), [/mm] so gilt: [mm] $$(\Delta f)\circ g=\frac{\partial^2(f\circ g)}{\partial r^2}+\frac{1}{r}\frac{\partial (f\circ g)}{\partial r}+\frac{1}{r^2}\frac{\partial^2 (f\circ g)}{\partial\phi^2}$$ [/mm] auf [mm] $g^{-1}(X)$ [/mm]

Hallo zusammen.

Wir haben zu dieser Aufgabe Musterlösungen bekommen, nur verstehe ich die nicht so ganz. Es geht jetzt erstmal nur um die Umformung von [mm] $\frac{\partial^2(f\circ g)}{\partial r^2}$. [/mm]
ich verwende eine etwas andere Notation, weil ich die besser verstehe: [mm] $D_1$ [/mm] ist bei mir die Ableitung nach der ersten Variablen, [mm] $D_2$ [/mm] die Ableitung nach der zweiten Variablen, [mm] e_i [/mm] der i-te Einheitsvektor. Meine Rechnung wäre dann (ich weiss, viel zu ausführlich, aber sonst kapier ichs nicht :D):
[mm] \frac{\partial^2(f\circ g)}{\partial r^2}(r,\phi) [/mm]
[mm] =D_1D_1(f\circ g)(r,\phi) [/mm]
[mm] =DD(f\circ g)(r,\phi)e_1e_1 [/mm]
[mm] =D(Df\circ g(r,\phi)\circ Dg(r,\phi))e_1e_1 [/mm]
[mm] =D(Df\circ g(r,\phi)\circ D_1g(r,\phi))e_1 [/mm]
[mm] =D(Df\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi})e_1 [/mm]
[mm] =D(Df\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+Df\circ g(r,\phi)\circ \vektor{0\\ \sin\phi})e_1 [/mm]
[mm] =D(\cos\phi\cdot D_1f\circ g(r,\phi)+\sin\phi\cdot D_2f\circ g(r,\phi))e_1 [/mm]
[mm] =\cos\phi\cdot D(D_1f\circ g)(r,\phi)e_1+\sin\phi\cdot D(D_2f\circ g)(r,\phi)e_1 [/mm]
[mm] =\cos\phi\cdot DD_1f\circ g(r,\phi)\circ Dg(r,\phi) e_1+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ Dg(r,\phi)e_1 [/mm]
[mm] =\cos\phi\cdot DD_1f\circ g(r,\phi)\circ D_1g(r,\phi)+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ D_1g(r,\phi) [/mm]
[mm] =\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi} [/mm]
[mm] =\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{0\\ \sin\phi}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{0\\ \sin\phi} [/mm]
[mm] =(\cos\phi)^2\cdot D_1D_1f\circ g(r,\phi)+\cos\phi\sin\phi\cdot D_2D_1f\circ g(r,\phi) +\cos\sin\phi\cdot D_1D_2f\circ g(r,\phi)+(\sin\phi)^2\cdot D_2D_2f\circ g(r,\phi) [/mm]
[mm] =(\cos\phi)^2\cdot D_1D_1f\circ g(r,\phi)+2\cos\phi\sin\phi\cdot D_2D_1f\circ g(r,\phi) +(\sin\phi)^2\cdot D_2D_2f\circ g(r,\phi) [/mm]

oke und jetzt muss hier irgendwo ein grober Denkfehler drin sein, weil in den Musterlösungen steht:
[mm] $\partial_r^2(f\circ g)=(\partial_x [/mm] ^2 [mm] f)\circ [/mm] g [mm] \cos^2\phi +(\partial_y [/mm] ^2 [mm] f)\circ [/mm] g [mm] \sin^2 \phi [/mm] + [mm] 2(\partial_x f)\circ g(\partial_y f)\circ [/mm] g [mm] \sin\phi\cos\phi$ [/mm]
und ich bin der Meinung, dass
[mm] $(\partial_x f)\circ g(\partial_y f)\circ [/mm] g [mm] \not= D_2D_1f\circ [/mm] g$




ich gebe zu, das ist ne lange hässliche Rechnung, aber vielleicht erbarmt sich ja trotzdem jemand meiner Dummheit ;)



edit: ääähm ja, ich bin auch noch zu doof das ganze im richtigen Forumsteil zu posten :D sry, weiss nicht wie ich das jetzt noch verschieben kann.....

        
Bezug
Gleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 21.07.2010
Autor: rainerS

Hallo!

> Es sei [mm]g: [0,\infty)\times \IR\rightarrow\IR^2, (r,\phi)\mapsto(r\cos(\phi),r\sin(\phi))[/mm],
> [mm]H:= (-\IR^+)\times\{0\}[/mm] Verifiziere:
>  Sind [mm]X[/mm] offen in [mm]\IR^2\backslash H[/mm] und [mm]$f\in C^2(X,\IR),[/mm] so
> gilt: [mm](\Delta f)\circ g=\frac{\partial^2(f\circ g)}{\partial r^2}+\frac{1}{r}\frac{\partial (f\circ g)}{\partial r}+\frac{1}{r^2}\frac{\partial^2 (f\circ g)}{\partial\phi^2}[/mm]
> auf [mm]$g^{-1}(X)$[/mm]
>  Hallo zusammen.
>  
> Wir haben zu dieser Aufgabe Musterlösungen bekommen, nur
> verstehe ich die nicht so ganz. Es geht jetzt erstmal nur
> um die Umformung von [mm]\frac{\partial^2(f\circ g)}{\partial r^2}[/mm].
>  
> ich verwende eine etwas andere Notation, weil ich die
> besser verstehe: [mm]D_1[/mm] ist bei mir die Ableitung nach der
> ersten Variablen, [mm]D_2[/mm] die Ableitung nach der zweiten
> Variablen, [mm]e_i[/mm] der i-te Einheitsvektor. Meine Rechnung
> wäre dann (ich weiss, viel zu ausführlich, aber sonst
> kapier ichs nicht :D):
>  [mm]\frac{\partial^2(f\circ g)}{\partial r^2}(r,\phi)[/mm]
>  
> [mm]=D_1D_1(f\circ g)(r,\phi)[/mm]
>  [mm]=DD(f\circ g)(r,\phi)e_1e_1[/mm]
>  
> [mm]=D(Df\circ g(r,\phi)\circ Dg(r,\phi))e_1e_1[/mm]
>  [mm]=D(Df\circ g(r,\phi)\circ D_1g(r,\phi))e_1[/mm]
>  
> [mm]=D(Df\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi})e_1[/mm]
>  
> [mm]=D(Df\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+Df\circ g(r,\phi)\circ \vektor{0\\ \sin\phi})e_1[/mm]
>  
> [mm]=D(\cos\phi\cdot D_1f\circ g(r,\phi)+\sin\phi\cdot D_2f\circ g(r,\phi))e_1[/mm]
>  
> [mm]=\cos\phi\cdot D(D_1f\circ g)(r,\phi)e_1+\sin\phi\cdot D(D_2f\circ g)(r,\phi)e_1[/mm]
>  
> [mm]=\cos\phi\cdot DD_1f\circ g(r,\phi)\circ Dg(r,\phi) e_1+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ Dg(r,\phi)e_1[/mm]
>  
> [mm]=\cos\phi\cdot DD_1f\circ g(r,\phi)\circ D_1g(r,\phi)+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ D_1g(r,\phi)[/mm]
>  
> [mm]=\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{\cos\phi\\ \sin\phi}[/mm]
>  
> [mm]=\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+\cos\phi\cdot DD_1f\circ g(r,\phi)\circ \vektor{0\\ \sin\phi}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{\cos\phi\\ 0}+\sin\phi\cdot DD_2f\circ g(r,\phi)\circ \vektor{0\\ \sin\phi}[/mm]
>  
> [mm]=(\cos\phi)^2\cdot D_1D_1f\circ g(r,\phi)+\cos\phi\sin\phi\cdot D_2D_1f\circ g(r,\phi) +\cos\sin\phi\cdot D_1D_2f\circ g(r,\phi)+(\sin\phi)^2\cdot D_2D_2f\circ g(r,\phi)[/mm]
>  
> [mm]=(\cos\phi)^2\cdot D_1D_1f\circ g(r,\phi)+2\cos\phi\sin\phi\cdot D_2D_1f\circ g(r,\phi) +(\sin\phi)^2\cdot D_2D_2f\circ g(r,\phi)[/mm]


Deine Notation verstehe ich nicht. Was ist $D$?

> oke und jetzt muss hier irgendwo ein grober Denkfehler drin
> sein, weil in den Musterlösungen steht:
>  [mm]\partial_r^2(f\circ g)=(\partial_x ^2 f)\circ g \cos^2\phi +(\partial_y ^2 f)\circ g \sin^2 \phi + 2(\partial_x f)\circ g(\partial_y f)\circ g \sin\phi\cos\phi[/mm]

Das ist falsch. Im letzten Term steht ein Produkt zweier Ableitungen von f; das kann nicht sein. Es muss heißen

[mm]\partial_r^2(f\circ g)=(\partial_x ^2 f)\circ g \cos^2\phi +(\partial_y ^2 f)\circ g \sin^2 \phi + 2(\partial_x\partial_y f)\circ g \sin\phi\cos\phi[/mm]

Viele Grüße
   Rainer

Bezug
                
Bezug
Gleichung zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mi 21.07.2010
Autor: nooschi

vielen Dank! (was D und so sein soll, habe ich weiter oben geschrieben, aber ist egal, meine Lösung stimmt mit Deiner überrein. dann sind wohl die Musterlösungen nicht so ganz korrekt ;-))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]