matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeGleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - Gleichungen
Gleichungen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: Modulus
Status: (Frage) beantwortet Status 
Datum: 11:42 So 10.01.2010
Autor: AnikaBrandes

Hi,leute
ich habe die Rechneung mit dem modulus igendwie noch immer nicht verstanden.
Könnte einer von euch mir ausführlich erklären wie das geht?
z.B an dieser Gleichung:
[mm] 7x-5\equiv6 [/mm] mod 13

Danke

        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 So 10.01.2010
Autor: Sax

Hi,


>  [mm]7x-5\equiv6[/mm] mod 13

Die Gleichung bedeutet, dass wir eine Zahl x suchen, so dass 7x-5 bei Division durch 13 den Rest 6 lässt.
Modulo-Rechnung bedeutet, dass wir uns immer nur für den Rest interessieren, der bei Division durch den Modulus übrig bleibt.

In "normalen" Zahlen sähe die Rechnung doch folgendermaßen aus :
7x - 5  = 6    I  +5
7x      = 11   I  *(1/7)
x       = 11/7

Die Rechnung geht hier genauso, dass Problem ist, 1/7 zu finden.
1/7 ist doch diejenige Zahl mit der Eigenschaft, dass 1/7 * 7  =  1  ist.
In der Modulo-Rechnung müssen wir also eine Zahl finden, die mit 7 multipliziert bei Division durch 13 den Rest 1 lässt.
Das geht so :
7 und 13 haben den ggT 1, und der lässt dich mit Hilfe des Euklidischen Algorithmus als Summe von 7en und 13en darstellen :
13 = 1*7 + 6
7 = 1*6 + 1
also ist 1 = 7 - 1*6 = 7 - 1* (13-1*7)  =  -1*13 + 2*7

(Noch ein Beispiel :
gesucht ist ggT(474 , 87) und eine Darstellung

474 = 5*87 + 39
87 = 2*39 + 9
39 = 4*9 + 3
9 = 3*3 + 0

Der letzte Rest, der nicht Null ist, ist der ggT, hier 3.
Von unten nach oben :
3 = 39 - 4*9 = 39 - 4*(87 - 2*39) = (474-5*87)  -  4*(87 - 2*(474-5*87))
  =  474 - 5*87 - 4*87 + 8*474 - 40*87  =  9*474 - 49*87)

Zurück zu unserer Aufgabe :
Weil 1 = -1*13 + 2*7 ist, ist 1/7 [mm] \equiv [/mm] 2 mod 13.

Die Rechnung modulo 13 geht also so :

7x - 5 [mm] \equiv [/mm] 6   I +5
7x     [mm] \equiv [/mm] 11  I *2
x      [mm] \equiv [/mm] 22  
       [mm] \equiv [/mm]  9

Probe :
7*9 - 5  =  63 - 5  =  58  und 58 : 13 = 4 Rest 6.

Gruß Sax.



Bezug
                
Bezug
Gleichungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:41 So 10.01.2010
Autor: AnikaBrandes

Boaa!Genial,
Hab eigentlich alles verstanden bis auf,
  

> 7x - 5 [mm]\equiv[/mm] 6   I +5
>  7x     [mm]\equiv[/mm] 11  I *2
>   x      [mm]\equiv[/mm] 22  
> [mm]\equiv[/mm]  9

auf die 2 kommst du wahrscheinlich weil   =  -1*13 + 2*7
Wie kommst du jedoch dann auf 9?

Wie sieht es z.B bei diesen Aufgaben aus:

[mm] (2k)^{2} [/mm] mod 4  &   [mm] (2k+1)^{2} [/mm] mod 4?

Anika

Bezug
                        
Bezug
Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 So 10.01.2010
Autor: Sax

Hi,
die 9 ergibt sich, weil 22 : 13 = 1 Rest 9 ist.
Hab' für den Rest jetzt leider keine Zeit mehr, vielleicht jemand anderes.
Gruß Sax.

Bezug
                        
Bezug
Gleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 12.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]