matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Gleichungssystem
Gleichungssystem < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Fr 27.04.2012
Autor: Mathe-Andi

Aufgabe
Wähle für d eine rationale Zahl so, dass das lineare Gleichungssystem a) unendlich viele Lösungen, b) keine Lösung hat.

Hallo,

habe ich das richtig gelöst?

[mm] \vmat{ x+7y=d \\ 2x+14y=10 } [/mm]

a)

d=5, denn:

-7y+5+7y=5
5=5
wahre Aussage, daher [mm] \IL=\IR [/mm]

b)

d=-5, denn:

-7y+5+7y=-5
5=-5
falsche Aussage, daher [mm] \IL=\{\} [/mm]

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Sa 28.04.2012
Autor: Adamantin


> Wähle für d eine rationale Zahl so, dass das lineare
> Gleichungssystem a) unendlich viele Lösungen, b) keine
> Lösung hat.
>  Hallo,
>  
> habe ich das richtig gelöst?
>  
> [mm]\vmat{ x+7y=d \\ 2x+14y=10 }[/mm]
>  
> a)
>  
> d=5, denn:
>  
> -7y+5+7y=5
>  5=5

Woher kommt diese Gleichung mit -7y??

Du addierst erstmal das 2fache der ersten Gleichung zum negativen der zweiten, um x und y zu eliminieren, das ist unabhängig von d:

(I):  2x+14y=2d
-(II): -2x-14y=-10

Addition:

0=2d-10

Jetzt kannst du a und b beantworten.

Für d=5 folgt 0=0 und es gibt in der Tat eine freie Variable, also ja du hast richtig gelöst, auch wenn ich deinen Lösungsweg nicht sehe ;)

>  wahre Aussage, daher [mm]\IL=\IR[/mm]

Die Lösungsmenge ist nicht [mm] \IR! [/mm] Du wählst eine Variable als frei, z.B.
[mm] $y=\labda \in \IR$. [/mm] Daraus folgt für x nach der 1. Gleichung:

[mm] $x=5-7y=5-7\lambda$ [/mm]

Damit ist deine Lösung: [mm] $\IL=\{ (x,y) \in \IR^2 | x=5-7\lambda, y=\lambda \}$ [/mm]




>  
> b)
>  
> d=-5, denn:
>  
> -7y+5+7y=-5
>  5=-5
>  falsche Aussage, daher [mm]\IL=\{\}[/mm]  

Nicht nur. Bei meiner Variante lautete die Gleichung:
$0=2d-10$.

Demnach ist sie NUR für d=5 überhaupt sinnvoll lösbar. ALLE anderen Lösungen erzeugen einen Widerspruch, daher gilt für d:

Damit keine Lösung existiert, muss gelten: $d [mm] \neq [/mm] 5$


Bezug
                
Bezug
Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Sa 28.04.2012
Autor: Mathe-Andi

Hallo,

ok soweit verstanden. Wenn die Aussage "wahr" ist wählt man eine Variable und legt an ihr den Lösungsbereich fest (ganz einfach ausgedrückt), richtig? Warum wähle ich für y aber [mm] \lambda, [/mm] mit y handelt es sich doch schon um eine Variable?

>  
> Damit ist deine Lösung: [mm]\IL=\{ (x,y) \in \IR^2 | x=5-7\lambda, y=\lambda \}[/mm]

Und in der Lösung schreibst du (x,y) [mm] \in \IR^2 [/mm] , also nur alle positiven Rationalen Zahlen? Müsste man y dann nicht auch so definieren:?
  

> Die Lösungsmenge ist nicht [mm]\IR![/mm] Du wählst eine Variable
> als frei, z.B.
>  [mm]y= \lambda \in \IR[/mm].

[mm]y= \lambda \in \IR^2[/mm]?


Bezug
                        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 28.04.2012
Autor: angela.h.b.


> Hallo,
>  
> ok soweit verstanden. Wenn die Aussage "wahr" ist wählt
> man eine Variable und legt an ihr den Lösungsbereich fest
> (ganz einfach ausgedrückt), richtig? Warum wähle ich für
> y aber [mm]\lambda,[/mm] mit y handelt es sich doch schon um eine
> Variable?

Hallo,

mir fällt es schwer, hierauf verständlich zu antworten.
Ich hole etwas aus.

Es geht hier ja um Lineare Gleichungssysteme.
Zum Lösen von linearen Gleichungssystemem ist der Gaußalgorithmus (Umformen in Zeilenstufenform) sehr nützlich. Er wurde bestimmt im Unterricht besprochen, und "man" muß ihn können.
Lineare Gleichungssysteme haben keine, genau eine oder viele Lösungen.

Beispiele:

genau eine Lösung:

I.  x+ 7y=4
II. 2x+15y=10

II-2I ergibt II':

I'.  x+ 7y=4
II'.    y=2

I'-7II' ergibt I''

I''. x=-10
II''. y=2

Dieses LGS hat genau eine Lösung, nämlich das Zahlenpaar (x|y)=(-10|2)

Gauß-Algorithmus wie oben, aber in Matrixform:

[mm] \pmat{1&7&|&4\\2&15&|&10} [/mm] --> [mm] \pmat{1&7&|&4\\0&1&|&2} [/mm] --> [mm] \pmat{1&0&|&-10\\0&1&|&2} [/mm]

Falls "Rang" besprochen wurde: [mm] \pmat{1&0\\0&1} [/mm]  hat denselben Rang wie [mm] \pmat{1&0&|&-10\\0&1&|&2} [/mm] (nämlich 2), also ist das LGS lösbar.
Hier ist Rang=Anzahl der Variablen, also ist das LGS eindeutig lösbar.

letzte Matrix in GS übersetzt: x=-10 , y=4.

genau keine Lösung:

I.  x+ 7y=4
II. 2x+14y=10

II-2I ergibt II':

I'. x+ 7y=4
II'. 0=2

Kein Zahlenpaar (x|y) kann machen, daß 0=2 wahr ist.
Also hat das LGS keine Lösung.

Gauß-Algorithmus wie oben, aber in Matrixform:

[mm] \pmat{1&7&|&4\\2&14&|&10} [/mm] --> [mm] \pmat{1&7&|&4\\0&0&|&2} [/mm]

[mm] \pmat{1&7\\0&0} [/mm]  hat den Rang 1, [mm] \pmat{1&7&|&4\\0&0&|&2} [/mm]  den Rang 2, also ist das LGS nicht lösbar.

letzte Zeile der Matrix in Gleichung übersetzt:

0=*x+0*y=2 <==> 0=2, also keine LSG.

viele Lösungen:

I.  x+ 7y=5
II. 2x+14y=10

II-2I ergibt II':

I'. x+ 7y=5
II'. 0=0

Die Richtigkeit der zweiten Gleichung kann durch  keine Wahl von x,y verdorben werden.
Sofern wir x und y so organisieren, daß x+7y=4 gilt, ist das LGS gelöst.
Das bedeutet: wir dürfen irgendein beliebiges y wählen, und müssen es dann bloß so einrichten, daß wir das passende x nehmen, nämlich x=4-7y.

Wählen wir also [mm] y:=\lambda, [/mm] so ist das Zahlenpaar [mm] (x|y)=(4-7\lambda|\lambda) [/mm] eine Lösung.

Anders ausgesagt: für jede Wahl von [mm] \lambda [/mm] ist [mm] (x|y)=(4-7\lambda|\lambda)=(4|0)-\lambda*(7|1) [/mm] eine Lösung des LGS.
Also haben wir unendlich viele Lösungen in diesem Falle.

Gauß-Algorithmus wie oben, aber in Matrixform:

[mm] \pmat{1&7&|&5\\2&15&|&10} [/mm] --> [mm] \pmat{1&7&|&4\\0&0&|&0} [/mm]

Es ist [mm] Rang\pmat{1&7\\0&0}=Rang\pmat{1&7&|&4\\0&0&|&0}, [/mm] also lösbar.
[mm] Rang\pmat{1&7\\0&0}< [/mm] Anzahl der Variablen, also gibt es unendlich viele Lösungen.


>
> >  

> > Damit ist deine Lösung: [mm]\IL=\{ (x,y) \in \IR^2 | x=5-7\lambda, y=\lambda \}[/mm]
>  
> Und in der Lösung schreibst du (x,y) [mm]\in \IR^2[/mm] , also nur
> alle positiven Rationalen Zahlen?

Nein, das bedeutet, daß x und y beide aus [mm] \IR [/mm] kommen müssen.
Die Menge, die alle reellen Zahlenpaare enthält, nennt man [mm] $\IR^2$ [/mm]  oder auch [mm] \IR\times\IR. [/mm]

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]