matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeGleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Deutsche Mathe-Olympiade" - Gleichungssystem
Gleichungssystem < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem: Starthilfe bei Lösung
Status: (Frage) beantwortet Status 
Datum: 21:00 Mi 16.10.2013
Autor: MasterEi1997

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Man bestimme für alle Tripel (x, y, z) positiver ganzer Zahlen, die das Gleichungssystem

[1]    -10(z-2xy)+(y-5)/(x) = 52
[2]    x-y+z = 53
[3]    x(y+7)= 53

erfüllen, das Produkt xyz.



Ich habe leider keinen Lösungsansatz...
Dies ist übrigens die erste Aufgabe der 53. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 ;)

        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 16.10.2013
Autor: Richie1401

Hallo,

wir geben hier keine Lösungen von solchen Aufgaben aus, denn jeder sollte natürlich selbst sein Köpfchen anstrengen.

Aber so viel sei gesagt: Wie hast du Gleichungsysteme mit zwei Variablen gelöst? Es gab da drei Methoden: Einsetzungs-, Gleichsetzungs- und Additionsverfahren.

Hier ist es halt ein bisschen komplizierter. Aber versuchen kannst du diesen Weg durchaus.

Ob es zum Ziel führt weiß ich selbst nicht. Ich werde es auch nicht versuchen, sonst kommt ich noch in Versuchung mehr Lösungsratschläge zugeben.

Bezug
        
Bezug
Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mi 16.10.2013
Autor: abakus


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Man bestimme für alle Tripel (x, y, z) positiver ganzer
> Zahlen, die das Gleichungssystem

>

> [1] -10(z-2xy)+(y-5)/(x) = 52
> [2] x-y+z = 53
> [3] x(y+7)= 53

>

> erfüllen, das Produkt xyz.

>
>
>

> Ich habe leider keinen Lösungsansatz...
> Dies ist übrigens die erste Aufgabe der 53.
> Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen
> 11 und 12 ;)

Hallo,
x, y und z sollen GANZE Zahlen sein.
Es gibt verdammt wenige Möglichkeiten, die Zahl 53 in Gleichung [3] als Produkt von zwei ganzen Zahlen darzustellen.
Die daraus resultierende Fallunterscheidung ist sehr überschaubar.

Das muss als Hinweis reichen.

Gruß Abakus

PS: Du hast die dritte Gleichung falsch abgeschrieben, damit sind einige Fälle mehr zu betrachten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]