matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe-SoftwareGleichungssystem lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe-Software" - Gleichungssystem lösen
Gleichungssystem lösen < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem lösen: Gleichungssystem mit Gausschem
Status: (Frage) beantwortet Status 
Datum: 08:35 Do 15.08.2013
Autor: schorsch_76

Aufgabe
Lösung des Gleichungssystems mit Gausschem Eliminationsverfahren.

[mm] \[tx−\mathrm{sin}\left( \phi\right) \,ry+\mathrm{cos}\left( \phi\right) \,rx−px+my\,\mathrm{sin}\left( \phi\right) −mx\,\mathrm{cos}\left( \phi\right) +2\,mx=0\] [/mm]

[mm] \[ty+\mathrm{cos}\left( \phi\right) \,ry+\mathrm{sin}\left( \phi\right) \,rx−py−mx\,\mathrm{sin}\left( \phi\right) −my\,\mathrm{cos}\left( \phi\right) +2\,my=0\] [/mm]

[mm] \[−2\,\mathrm{sin}\left( \phi\right) \,ry\,ty+2\,\mathrm{cos}\left( \phi\right) \,rx\,ty+2\,my\,\mathrm{sin}\left( \phi\right) \,ty−2\,mx\,\mathrm{cos}\left( \phi\right) \,ty−2\,\mathrm{cos}\left( \phi\right) \,ry\,tx−2\,\mathrm{sin}\left( \phi\right) \,rx\,tx+2\,mx\,\mathrm{sin}\left( \phi\right) \,tx+2\,my\,\mathrm{cos}\left( \phi\right) \,tx+2\,\mathrm{sin}\left( \phi\right) \,py\,ry+2\,\mathrm{cos}\left( \phi\right) \,px\,ry−4\,my\,\mathrm{sin}\left( \phi\right) \,ry−4\,mx\,\mathrm{cos}\left( \phi\right) \,ry−2\,\mathrm{cos}\left( \phi\right) \,py\,rx+2\,\mathrm{sin}\left( \phi\right) \,px\,rx−4\,mx\,\mathrm{sin}\left( \phi\right) \,rx+4\,my\,\mathrm{cos}\left( \phi\right) \,rx−2\,my\,\mathrm{sin}\left( \phi\right) \,py+2\,mx\,\mathrm{cos}\left( \phi\right) \,py−2\,mx\,\mathrm{sin}\left( \phi\right) \,px−2\,my\,\mathrm{cos}\left( \phi\right) \,px+4\,{my}^{2}\,\mathrm{sin}\left( \phi\right) +4\,{mx}^{2}\,\mathrm{sin}\left( \phi\right) =0\] [/mm]

[mm] \[{\mathrm{sin}\left( \phi\right) }^{2}+{\mathrm{cos}\left( \phi\right) }^{2}−1=0\] [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vorneweg: Ich habe eine Gleichung aufgestellt welche ich nach den unbekannten abgeleitet habe mit wxmaxima. Jetzt hab ich natürlich ein Gleichungssystem aufgestellt welches Maxima auch lösen kann. Das ganze soll jetzt in Software gegossen werden. Dazu habe ich einen Gleichungslöser nach Gauss implementiert welcher auch funktioniert.

Das Problem:
Die Gleichung 3 im obigen System enthält Summanden wie
[mm] \[2\,\mathrm{sin}\left( \phi\right) \,rx\,ty\] [/mm]
welche 2 unbekannte, sin(phi) und ty multiplizieren. Gleichungssystem mit Gleichungen nach dem Schema
[mm] \[a\,{x}^{3}+b\,{x}^{2}+c\,x+d=0\] [/mm]
lassen sich natürlich lösen da die unbekannten a/b/c/d nicht multipliziert werden.

Wie kann ich vorgehen um die Terme [mm] \[2\,\mathrm{cos}\left( \phi\right) \,rx\,ty\] [/mm] mit dem Gausslöser zu erfassen?

Gruß
schorsch


        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 15.08.2013
Autor: chrisno

Welches sind die gesuchten Größen, welches die gegebenen?
Sobald Du nicht mehr ein lineares Gleichungssystem hast, zum Beispiel weil da das Produkt zweier der gesuchten Größen vorkommt, sind die Methoden für lineare Gleichungssysteme nicht mehr adäquat. Du musst dann also in die Lösungsverfahren für nichtlineare Gleichungssysteme einsteigen.

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Do 15.08.2013
Autor: schorsch_76

Also die unbekannten sin tx,ty und phi. Folglich also sin(phi) und cos(phi). Mit dem Gleichungslöser nach Gauss brauch ich halt pro Spalte Faktor * unbekannte.

Welchen Typ von Gleichungslöser müsste man verwenden um Gleichungen wie
x * y + 5 = 0
3*x + 2*y + 3 = 0

also um das x * y zu lösen?
Manuell würde ich halt die untere Gleichung nach y auflösen und oben einsetzten. Oder halt umgekehrt. Aber wie heist der Algorithmus mit dem man dies dem Computer beibringen kann?

Gruß
schorsch

Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Do 15.08.2013
Autor: M.Rex

Hallo

> Also die unbekannten sin tx,ty und phi. Folglich also
> sin(phi) und cos(phi).

Setze doch bitte vor den Index den Unterstrich _ und vor den griechischen Buchstaben einen Backslash, dann bekommst du [mm] t_x t_y [/mm] und [mm] \phi [/mm]

> Mit dem Gleichungslöser nach Gauss
> brauch ich halt pro Spalte Faktor * unbekannte.

>

> Welchen Typ von Gleichungslöser müsste man verwenden um
> Gleichungen wie
> x * y + 5 = 0
> 3*x + 2*y + 3 = 0

>

> also um das x * y zu lösen?
> Manuell würde ich halt die untere Gleichung nach y
> auflösen und oben einsetzten. Oder halt umgekehrt. Aber
> wie heist der Algorithmus mit dem man dies dem Computer
> beibringen kann?

Das Verfahren nennt man Einsetzungsverfahren.

>

> Gruß
> schorsch

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]