matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenGleichungssysteme Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Gleichungssysteme Matrizen
Gleichungssysteme Matrizen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssysteme Matrizen: Matrix nach x auflösen
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 21.02.2013
Autor: Laser

Aufgabe
[mm] \pmat{ k1 \\ k2 } [/mm] = [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } [/mm] * [mm] \pmat{ x1 \\ x2 \\ x3 } [/mm]


Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich habe Schwierigkeiten die Funktion nach x umzustellen, da ich keine Inverse aus der [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } [/mm] Matrix bilden kann
Wie kann ich das Gleichungssystem lösen?

Mein Ansatz war bis jetzt:

E * [mm] \pmat{ x1 \\ x2 \\ x3 } [/mm] = [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } [/mm] * [mm] \pmat{ k1 \\ k2 } [/mm]

Vielen Dank!

        
Bezug
Gleichungssysteme Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 21.02.2013
Autor: MathePower

Hallo Laser,

[willkommenmr]

> [mm]\pmat{ k1 \\ k2 }[/mm] = [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm] *
> [mm]\pmat{ x1 \\ x2 \\ x3 }[/mm]
>  Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  ich habe Schwierigkeiten die Funktion nach x umzustellen,
> da ich keine Inverse aus der [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]
> Matrix bilden kann
>  Wie kann ich das Gleichungssystem lösen?
>  


Du kannst die Gleichung von links mit [mm]\pmat{ a1 & a2 \\ b1 & b2 \\ c1 & c2 }[/mm] multiplizieren,
und dann, falls

[mm]\pmat{ a1 & a2 \\ b1 & b2 \\ c1 & c2}\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]

invertierber ist, eine Lösung bestimmen.

Das Gleichungssysten lautet dann:

[mm]\pmat{ a1 & a2 \\ b1 & b2 \\ c1 & c2}\pmat{ k1 \\ k2 } = \pmat{ a1 & a2 \\ b1 & b2 \\ c1 & c2}\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }* \pmat{ x1 \\ x2 \\ x3 }[/mm]


> Mein Ansatz war bis jetzt:
>
> E * [mm]\pmat{ x1 \\ x2 \\ x3 }[/mm] = [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]
> * [mm]\pmat{ k1 \\ k2 }[/mm]
>
> Vielen Dank!


Gruss
MathePower

Bezug
                
Bezug
Gleichungssysteme Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Do 21.02.2013
Autor: Sax

Hi,

>  und dann, falls
>  
> [mm]\pmat{ a1 & a2 \\ b1 & b2 \\ c1 & c2}\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]
>  
> invertierber ist, eine Lösung bestimmen.
>  

Schade nur, dass diese Matrix immer singulär ist.

Gruß Sax.

Bezug
        
Bezug
Gleichungssysteme Matrizen: Neuer Vorschlag
Status: (Antwort) fertig Status 
Datum: 19:37 Do 21.02.2013
Autor: MathePower

Hallo Laser,

> [mm]\pmat{ k1 \\ k2 }[/mm] = [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm] *
> [mm]\pmat{ x1 \\ x2 \\ x3 }[/mm]
>  
> Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  ich habe Schwierigkeiten die Funktion nach x umzustellen,
> da ich keine Inverse aus der [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]
> Matrix bilden kann
>  Wie kann ich das Gleichungssystem lösen?
>  
> Mein Ansatz war bis jetzt:
>
> E * [mm]\pmat{ x1 \\ x2 \\ x3 }[/mm] = [mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 }[/mm]
> * [mm]\pmat{ k1 \\ k2 }[/mm]
>


Minimiere den Betrag des Vektors

[mm]\pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } \pmat{ x1 \\ x2 \\ x3 }-\pmat{ k1 \\ k2 }[/mm]


> Vielen Dank!



Gruss
MathePower

Bezug
                
Bezug
Gleichungssysteme Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 22.02.2013
Autor: Laser

$ [mm] \pmat{ k1 \\ k2 } [/mm] $ = $ [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } [/mm] $ * $ [mm] \pmat{ x1 \\ x2 \\ x3 } [/mm] $
>  Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  ich habe Schwierigkeiten die Funktion nach x umzustellen,
> da ich keine Inverse aus der $ [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } [/mm] $
> Matrix bilden kann
>  Wie kann ich das Gleichungssystem lösen?

Minimiere den Betrag des Vektors

$ [mm] \pmat{ a1 & b1 & c1 \\ a2 & b2 & c2 } \pmat{ x1 \\ x2 \\ x3 }-\pmat{ k1 \\ k2 } [/mm] $

Durch die minimierung des Betrages komme ich auf keine exakte Lösung von x? oder?

Da es kein quadratisches Gleichungssystem ist, komme ich selbst nicht mit pseudoinversen und co weiter

ich benötige eine genaue Lösung von x1 bis x3
auch die erweiterung der transponierten führt nur zu einer Singularität


Bezug
                        
Bezug
Gleichungssysteme Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Fr 22.02.2013
Autor: leduart

Hallo
warum löst du nicht einfach das GS, dabei nur aufpassen, nicht durch 0 zu dividieren. [mm] x_3=t [/mm] die anderen dann durch t ausgedrückt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]