matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGrad der Körpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Grad der Körpererweiterung
Grad der Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad der Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Fr 09.02.2007
Autor: hanesy

Aufgabe
Seien p,q verschiedene Primzahlen
Zeige:

[mm] [\IQ(\wurzel[]{p},\wurzel[]{q});\IQ]=4 [/mm]

Hallo allerseits!

Also es ist klar, dass gilt:
[mm] [\IQ(\wurzel[]{p}:\IQ]=2 [/mm]
da [mm] X^{2}-p [/mm]   als Nullstelle [mm] \wurzel[]{p} [/mm] enthält und nach Eisenstein irreduzibel ist.
Damit bleibt ja eigentlich nur zu zeigen, dass [mm] \wurzel[]{q} [/mm] nicht Element von [mm] \IQ(\wurzel[]{p}) [/mm] ist! Das ist mir zwar irgendwie klar, aber ich schaffe es nicht, dass formal richtig zu zeigen! Ich könnte nur damit argumentieren dass die beiden linear unabhängig sind, aber das wirkt mir etwas unsauber!
Hat vielleicht jemand eine Idee?
Viele Grüße
Hannes

        
Bezug
Grad der Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Fr 09.02.2007
Autor: statler

Mahlzeit Hannes!

> Seien p,q verschiedene Primzahlen
>  Zeige:
>  
> [mm][\IQ(\wurzel[]{p},\wurzel[]{q});\IQ]=4[/mm]

> Also es ist klar, dass gilt:
>  [mm][\IQ(\wurzel[]{p}:\IQ]=2[/mm]
>  da [mm]X^{2}-p[/mm]   als Nullstelle [mm]\wurzel[]{p}[/mm] enthält und nach
> Eisenstein irreduzibel ist.
>  Damit bleibt ja eigentlich nur zu zeigen, dass
> [mm]\wurzel[]{q}[/mm] nicht Element von [mm]\IQ(\wurzel[]{p})[/mm] ist! Das
> ist mir zwar irgendwie klar, aber ich schaffe es nicht,
> dass formal richtig zu zeigen! Ich könnte nur damit
> argumentieren dass die beiden linear unabhängig sind, aber
> das wirkt mir etwas unsauber!

Was ist daran 'unsauber'? (Unsauberkeiten wären nach den Foren-Regeln auch gar nicht zugelassen!) Wenn 1 und [mm]\wurzel[]{q}[/mm] über [mm]\IQ(\wurzel[]{p})[/mm] linear unabhängig sind, dann ist doch nach dem Gradsatz alles klar.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Grad der Körpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:36 Fr 09.02.2007
Autor: hanesy

Alles klar, dann vielen Dank für die prompte Antwort und ein schönes Wochenende!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]