matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGrad der Koerpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Grad der Koerpererweiterung
Grad der Koerpererweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad der Koerpererweiterung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:45 Do 17.06.2010
Autor: makw

Aufgabe
Wie lautet der Grad des Zerfaellungskoerper von [mm] x^{3}-2 [/mm] in [mm] F_{7}? [/mm]

Hallo, ich habe ueber Q bereits die Basis bilden koennen, aber weis jemand wie ich bei endlichen Koerpern vorgehen muss? Loesungansatz waere hilfreich. Vorab Dank.

MFG

        
Bezug
Grad der Koerpererweiterung: möglicher Lösungsweg
Status: (Antwort) fertig Status 
Datum: 09:14 Fr 18.06.2010
Autor: statler

Guten Morgen!

> Wie lautet der Grad des Zerfaellungskoerper von [mm]x^{3}-2[/mm] in
> [mm]F_{7}?[/mm]
>  Hallo, ich habe ueber Q bereits die Basis bilden koennen,
> aber weis jemand wie ich bei endlichen Koerpern vorgehen
> muss? Loesungansatz waere hilfreich. Vorab Dank.

Über endlichen Körpern ist alles viel einfacher. Ich hoffe, du kennst [mm] F_7 [/mm] und kannst nachweisen, daß dieses Polynom über [mm] F_7 [/mm] irreduzibel ist. Dann adjungierst du eine Nullstelle [mm] \alpha [/mm] vom Grad 3 und erhältst den Körper [mm] F_{343}. [/mm] Jetzt die brutale Methode: In diesem Körper teilst du dein Polynom durch X - [mm] \alpha. [/mm] Diese Division geht auf und ergibt ein Polynom 2. Grades. Dessen Nullstellen kannst du mit  der p-q-Formel bestimmen. Liegen sie in [mm] F_{343} [/mm] oder muß  man noch einmal erweitern - das ist hier die Frage.

Es geht auch eleganter, wenn man sich überlegt, daß es in [mm] F_7 [/mm] 3. Einheitswurzeln gibt.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Grad der Koerpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Fr 18.06.2010
Autor: PeterB

Hallo Dieter


>  
> Es geht auch eleganter, wenn man sich überlegt, daß es in
> [mm]F_7[/mm] 3. Einheitswurzeln gibt.
>  


man könnte auch, 3. Einheitswurzeln hin oder her, Galoistheorie verwenden: Da es zu jedem Grad genau eine Erweiterung gibt (Frobenius) sind alle Galoisgruppen zyklisch, also insbesondere abelsch! D.h. jede Erweiterung ist normal. Insbesondere erhält man für jedes irreduzible Polynom den Zerfällungkörper, wenn man eine Wurzel adjungiert.

Gruß
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]