matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Grad der Verkettung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Grad der Verkettung
Grad der Verkettung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad der Verkettung: Frage
Status: (Frage) beantwortet Status 
Datum: 08:09 Fr 27.05.2005
Autor: kimnhi

Hi!
Ich habe da mal eine Frage:


welchen grad hat die verkettung der ganzrationalen funktion f vom grad n mit der funktion g vom grad m?

f(x) = $ [mm] a_{n} [/mm] $ * $ [mm] x^{n} [/mm] $ + ... + $ [mm] a_{0} [/mm] $
g(x) = $ [mm] b_{m} [/mm] $ * $ [mm] x^{m} [/mm] $ + ... $ [mm] b_{0} [/mm] $

begründen sie ihre antwort.
toll habe keine ahnung was ich hier machen soll....

aufgabe d) untersuchen sie frage c) bezüglich der beiden speizialfälle

m > 1 und n=0

sowie

m = 1 und n > 1

Ich weiss garnicht, was mit dem Grad der Verkettung gemeint ist bzw. wie man ihn ermitteln kann.
Ich weiss nur, dass es sich ber der Verkettung um f(g(x)) handeln muss und man somit dass hier rausbekommt:$ [mm] a_{n} \cdot (g(x))^{n} [/mm] $ =  $ [mm] a_{n} \cdot (b_{m} \cdot x^{m} [/mm] + ... [mm] +b_{0})^n [/mm] $ .
Wie bestimme ich nun den Grad dieser Summanden?

Vielen lieben Dank!

        
Bezug
Grad der Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Fr 27.05.2005
Autor: Julius

Hallo kimnhi!

Also, man erhält ja:

$f(g(x)) = [mm] a_n(b_mx^m [/mm] + [mm] b_{m-1}x^{m-1} [/mm] + [mm] \ldots [/mm] + [mm] b_1x+b_0)^n [/mm] + [mm] a_{n-1} (b_mx^m [/mm] + [mm] b_{m-1}x^{m-1} [/mm] + [mm] \ldots [/mm] + [mm] b_1x+b_0)^{n-1} [/mm] + [mm] \ldots a_1(b_mx^m [/mm] + [mm] b_{m-1}x^{m-1} [/mm] + [mm] \ldots [/mm] + [mm] b_1x+b_0) [/mm] + [mm] a_0$. [/mm]

Jetzt schauen wir uns die einzelnen Potenzen mal an:

Für ein [mm] $i\in\{0,1,\ldots,n\}$ [/mm] gilt:

[mm] $(b_mx^m [/mm] + [mm] b_{m-1}x^{m-1} [/mm] + [mm] \ldots [/mm] + [mm] b_1x+b_0)^i [/mm] = [mm] b_m^i (x^m)^i [/mm] + [mm] \ldots \quad \mbox{Terme mit niedrigeren Potenzen} [/mm] = [mm] b_m^i x^{mi} [/mm] + [mm] \ldots \quad \mbox{Terme mit niedrigeren Potenzen}$. [/mm]

Die Summanden oben sind also jeweils ganzrationale Funktionen vom Grad $mi$, für [mm] $i=0,1,\ldots,n$. [/mm] Der Grad der ganzrationalen Funktion $f [mm] \circ [/mm] g$ insgesamt ist das Maximum dieser einzelnen Grade, also $mn$.

Noch einmal "in Formeln":

$f(g(x)) = [mm] a_nb_m^n x^{mn} [/mm] + [mm] \ldots \quad \mbox{Terme mit niedrigeren Potenzen}$. [/mm]

Viele Grüße
Julius

Bezug
                
Bezug
Grad der Verkettung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:14 Fr 27.05.2005
Autor: kimnhi

Wurden diese Spezialfälle schon berüchtigt?
m > 1 und n=0

sowie

m = 1 und n > 1

Es tut mir leid!Ich blick da irgendwie nicht durch=(

Bezug
                        
Bezug
Grad der Verkettung: Spezialfälle
Status: (Antwort) fertig Status 
Datum: 19:24 Fr 27.05.2005
Autor: MathePower

Hallo,

die Spezialfälle sind da schon abgehandelt.

>  m > 1 und n=0

Für n=0  folgt der Grad f(g(x)) = m * 0 = 0, also eine Konstante.

> m = 1 und n > 1

Für n>1  folgt der Grad f(g(x)) = m *n = n.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]