matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGrad von Körpererweiterungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Group, Ring, Field" - Grad von Körpererweiterungen
Grad von Körpererweiterungen < Group, Ring, Field < Algebra < Algebra and Number Theoriy < University < Maths <
View: [ threaded ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ all forums  | ^ Tree of Forums  | materials

Grad von Körpererweiterungen: Aufgabe
Status: (Question) answered Status 
Date: 11:01 Di 10/01/2017
Author: nightsusi

Aufgabe
1. Bestimmen Sie den Grad der Körpererweiterungen [mm] \IQ(\sqrt{2},\sqrt{3}) [/mm] und [mm] \IQ(i,\wurzel[3]{2}) [/mm] über [mm] \IQ [/mm]

2. Zeigen Sie [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] und [mm] \IQ(i,\wurzel[3]{2})=\IQ(i\wurzel[3]{2}) [/mm]

Hallo zusammen, vielleicht könnt ihr mir bei obiger Aufgabe weiterhelfen.

Für  [mm] \IQ(\sqrt{2},\sqrt{3}) [/mm]  habe ich mir folgendes überlegt:
Ich betrachte den von [mm] \sqrt{2} [/mm] und    [mm] \sqrt{3} [/mm] erzeugten Unterkörper [mm] \IQ[\sqrt{2},\sqrt{3}] [/mm] von [mm] \IC. [/mm] Die Elemente 1, [mm] \sqrt{2}, \sqrt{3}, \sqrt{6} [/mm] bilden ein [mm] \IQ-Erzeugendensystem [/mm] und sogar eine Basis, da man anderenfalls [mm] \sqrt{3} [/mm] als rationale Linearkombination von 1 und [mm] \sqrt{2} [/mm] darstellen könnte. Somit hat die Körpererweiterung den Grad 4.

Um zu zeigen, dass [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] habe ich mir gedacht, dass es reichen könnte wenn ich sage, dass ich [mm] \sqrt{6} [/mm] durch [mm] \sqrt{2}*\sqrt{3} [/mm] und [mm] \sqrt{3} [/mm] durch [mm] \bruch{\sqrt{6}}{\sqrt{2}} [/mm] erzeugen kann. Denn es ist ja ein Körper der unter + und * abgeschlossen ist. Und [mm] \IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3}) [/mm] gilt, wenn die erzeugenden Elemente ds einen Körpers auch im anderen liegen, was hier der Fall ist.

Kann ich das so machen?

Und wie muss ich da bei [mm] \IQ(i,\sqrt[3]{2}) [/mm] vorgehen, da fehlt mir die Idee und es wäre lieb, wenn ihr mir da helfen könntet. DANKE

        
Bezug
Grad von Körpererweiterungen: Antwort
Status: (Answer) finished Status 
Date: 22:22 Di 10/01/2017
Author: hippias


> 1. Bestimmen Sie den Grad der Körpererweiterungen
> [mm]\IQ(\sqrt{2},\sqrt{3})[/mm] und [mm]\IQ(i,\wurzel[3]{2})[/mm] über [mm]\IQ[/mm]
>  
> 2. Zeigen Sie [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm]
> und [mm]\IQ(i,\wurzel[3]{2})=\IQ(i\wurzel[3]{2})[/mm]
>  Hallo zusammen, vielleicht könnt ihr mir bei obiger
> Aufgabe weiterhelfen.
>  
> Für  [mm]\IQ(\sqrt{2},\sqrt{3})[/mm]  habe ich mir folgendes
> überlegt:
>  Ich betrachte den von [mm]\sqrt{2}[/mm] und    [mm]\sqrt{3}[/mm] erzeugten
> Unterkörper [mm]\IQ[\sqrt{2},\sqrt{3}][/mm] von [mm]\IC.[/mm] Die Elemente
> 1, [mm]\sqrt{2}, \sqrt{3}, \sqrt{6}[/mm] bilden ein
> [mm]\IQ-Erzeugendensystem[/mm] und sogar eine Basis, da man
> anderenfalls [mm]\sqrt{3}[/mm] als rationale Linearkombination von 1
> und [mm]\sqrt{2}[/mm] darstellen könnte. Somit hat die
> Körpererweiterung den Grad 4.

Das stimmt zwar alles, aber überzeugt mich nicht: denn es fehlt mir eine Begründung für die lineare Unabhängigkeit und eine Begründung, weshalb sich jedes Element aus [mm] $\IQ[\sqrt{2},\sqrt{3}]$ [/mm] als [mm] $\IQ$-Linearkombination [/mm] von $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] darstellen lässt.

Man könnte so vorgehen: Definiere $F$ als den von $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] erzeugten [mm] $\IQ$-Vektorraum. [/mm]

1. Leicht macht man sich klar, dass [mm] $F\subseteq \IQ[\sqrt{2},\sqrt{3}]$ [/mm] ist.

2. Zeige, dass $F$ sogar ein Körper ist.

3. Weil [mm] $\IQ[\sqrt{2},\sqrt{3}]$ [/mm] der kleinste Körper ist, der [mm] $\sqrt{2}$ [/mm] und [mm] $\sqrt{3}$ [/mm] enthält, folgt dann auch [mm] $\IQ[\sqrt{2},\sqrt{3}]\subseteq [/mm] F$ und somit $F= [mm] \IQ[\sqrt{2},\sqrt{3}]$. [/mm]

4. Zeige, dass $1, [mm] \sqrt{2},\sqrt{3},\sqrt{6}$ $\IQ$-linear [/mm] unabhängig sind.

Statt einer Basis zu konstruieren, könntest Du auch mit Hilfe von Graden von Minimalpolynomen den Grad der Körpererweiterung bestimmen; das dürfte mit weniger Rechnungen verbunden sein.

>  
> Um zu zeigen, dass
> [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm] habe ich mir
> gedacht, dass es reichen könnte wenn ich sage, dass ich
> [mm]\sqrt{6}[/mm] durch [mm]\sqrt{2}*\sqrt{3}[/mm] und [mm]\sqrt{3}[/mm] durch
> [mm]\bruch{\sqrt{6}}{\sqrt{2}}[/mm] erzeugen kann. Denn es ist ja
> ein Körper der unter + und * abgeschlossen ist. Und
> [mm]\IQ(\sqrt{2},\sqrt{3})=\IQ(\sqrt{2}+\sqrt{3})[/mm] gilt, wenn
> die erzeugenden Elemente ds einen Körpers auch im anderen
> liegen, was hier der Fall ist.
>  
> Kann ich das so machen?

Nein. Du müsstest schon zeigen, dass [mm] $\sqrt{2},\sqrt{3},\sqrt{6}$ [/mm] sich Potenzen etc. von [mm] $\sqrt{2}+\sqrt{3}$ [/mm] darstellen lassen.

Dieser Ansatz geht (z.B. [mm] $(\sqrt{2}+\sqrt{3})^{2}=\ldots$), [/mm] aber es genügt zu zeigen, dass $4$ der Grad des Minimalpolynoms von [mm] $\sqrt{2}+\sqrt{3}$ [/mm] ist...

>  
> Und wie muss ich da bei [mm]\IQ(i,\sqrt[3]{2})[/mm] vorgehen, da
> fehlt mir die Idee und es wäre lieb, wenn ihr mir da
> helfen könntet. DANKE


Bezug
View: [ threaded ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 5h 36m 17. sancho1980
UAnaR1FunkDiff/Ableitung mit de l'Hospital
Status vor 11h 43m 9. fred97
UAnaInd/Beweise vollständige Induktion
Status vor 14h 46m 4. Gonozal_IX
UStoc/Kombinatorik Schachfiguren
Status vor 14h 57m 4. matux MR Agent
SStochWkeit/3xMindestens 3 Treffer
Status vor 14h 57m 6. matux MR Agent
UStat/Gleitender Durchschnitt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]