matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient,Richtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient,Richtungsableitung
Gradient,Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient,Richtungsableitung: Korrektur, Hilfe,Frage
Status: (Frage) beantwortet Status 
Datum: 00:39 Sa 19.02.2011
Autor: Bilmem

g (x,y,z) = [mm] 2x^2 [/mm]  - 3y +4 z

a) berechnen sie den Gradienten:  g (1,1,2)

nach x ableiten: 4x

nach y: -3

nach z: 4

wäre jetzt mein Gradient für g(1,1,2)  --> (4,3,4)

ist das so richtig?

dann soll man noch folgendes berechnen:

[mm] \frac{d^2g}{dx^2}+ \frac{d^2g}{dy^2} [/mm] + [mm] \frac{d^2g}{dz^2} [/mm]

wenn da d^2g steht ist ja die zweite ableitung gemeint, stimmt?

dann würde jedoch nicht viel übrigbleiben:S

für x:4

y=0

z=0 ...

und wie bringe ich dieses [mm] x^2 [/mm] , [mm] y^2 [/mm] etc ein ? :S



        
Bezug
Gradient,Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:51 Sa 19.02.2011
Autor: QCO


> wäre jetzt mein Gradient für g(1,1,2)  --> (4,3,4)
> ist das so richtig?

Da du ja richtigerweise ausgerechnet hast [mm]\bruch{d f}{d y} = -3[/mm], muss der Gradient [mm](4, -3, 4)[/mm] sein.


> wenn da d^2g steht ist ja die zweite ableitung gemeint,
> stimmt?

[..]

> und wie bringe ich dieses [mm]x^2[/mm] , [mm]y^2[/mm] etc ein ? :S

Beides zusammen ist die zweite Ableitung. [mm]\bruch{d g}{d x}[/mm] ist die erste partielle Ableitung nach [mm]x[/mm], [mm]\bruch{d^2 g}{d x^2}[/mm] die zweite partielle Ableitung zwei mal nach [mm]x[/mm] und [mm]\bruch{d g^2}{d x \ d y}[/mm] entsprechend die zweite partielle Ableitung nach [mm]x[/mm] und dann nach [mm]y[/mm].

Da bleibt tatsächlich nur [mm]\bruch{d^2 g}{d x^2} + \bruch{d^2 g}{d y^2} + \bruch{d^2 g}{d z^2} = 4[/mm] stehen.

Bezug
                
Bezug
Gradient,Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Sa 19.02.2011
Autor: Bilmem

was ist eigentlich wenn ich die zweite taylorreihe berechnen soll...

aber meine zweite ableitung mir lediglich eine zahl liefert... ?

existiert T2 dann nicht oder ist es dann nur T0+T1 ??

Bezug
                        
Bezug
Gradient,Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 19.02.2011
Autor: schachuzipus

Hallo,


> was ist eigentlich wenn ich die zweite taylorreihe
> berechnen soll...

Was ist die 2te Taylorreihe?

Meinst du Taylorpolynom der Ordnung 2?

>
> aber meine zweite ableitung mir lediglich eine zahl
> liefert... ?

Das Ding hat insgesamt 6 Summanden (für eine Fkt. in 2 Variablen).

Für eine Fkt. in 3 Variablen wird's stressiger, sprich: unübersichtlicher, weil komplexer ...

Du brauchst ja die Taylorformel für Funktionen in mehreren Variablen.

Schaue dir die mal auf Wikipedia oder im Skript an, die Multiindexversion.

Nimm mal an, du hast eine Funktion [mm]f(x_1,x_2)[/mm] und willst das TP 2.Ordnung in [mm]a=(a_1,a_2)[/mm] bestimmen.

Schreibe mal ganz allg. die Summanden in dem TP hin ...

Das ist die beste Übung, um zu verstehen, wie das Biest aussieht und wie du es dann berechnen kannst ...

> existiert T2 dann nicht oder ist es dann nur T0+T1 ??

Das verstehe ich leider nicht ...

Gruß

schachuzipus


Bezug
                                
Bezug
Gradient,Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 19.02.2011
Autor: Bilmem

also die funktion war: 1/2 [mm] (x-1)^2 [/mm]

f´(x)=(x-1)

f´´(x)=1

x0=1

wenn ich jetzt

To berechne kommt da Null raus

für T1 genauso..
so und die zweite ableitung ist 1... da ist kein x mit bei wo ich die entwicklungsstelle einsetzen kann... folgt dauraus dass T2 auch null ist?

oder existiert sie erst gar nicht :S

Bezug
                                        
Bezug
Gradient,Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 19.02.2011
Autor: MathePower

Hallo Bilmem,

> also die funktion war: 1/2 [mm](x-1)^2[/mm]
>  
> f´(x)=(x-1)
>  
> f´´(x)=1
>  
> x0=1
>  
> wenn ich jetzt
>
> To berechne kommt da Null raus
>  
> für T1 genauso..
>  so und die zweite ableitung ist 1... da ist kein x mit bei
> wo ich die entwicklungsstelle einsetzen kann... folgt
> dauraus dass T2 auch null ist?


Nein.

Es ist

[mm]T_{2}\left(x\right)=f\left(1\right)+f'\left(1\right)*\left(x-1\right)+\bruch{f''\left(1\right)}{2}*\left(x-1\right)^{2}=0+0*\left(x-1\right)}+\bruch{1}{2}*\left(x-1\right)^{2}[/mm]


>
> oder existiert sie erst gar nicht :S


Gruss
MathePower

Bezug
                                                
Bezug
Gradient,Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Sa 19.02.2011
Autor: Bilmem

[mm] \bruch{1}{2}\cdot{}\left(x-1\right)^{2} [/mm]

wie kommst du jetzt da drauf ??

die funktion ist  [mm] \bruch{1}{2}\cdot{}\left(x-1\right)^{2} [/mm]

und die zweite ableitung davon wäre 1

wenn ich jetzt T2 berechne müsste ich doch:

T2(x)= T1(x)+ f´´(x) / 2! * [mm] (x-1)^2 [/mm]

rechnen...hast du dort einfach die 1 eingesetzt?

hier stimmt die zweite ableitung ja mit der entwicklungsstelle überein, dürfte man das auch wenn die entwicklungsstelle 3 wäre und die zweite ableitung 1 ?

Bezug
                                                        
Bezug
Gradient,Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Sa 19.02.2011
Autor: schachuzipus

Hallo Bilmem,


> [mm]\bruch{1}{2}\cdot{}\left(x-1\right)^{2}[/mm]
>  
> wie kommst du jetzt da drauf ??
>  
> die funktion ist  [mm]\bruch{1}{2}\cdot{}\left(x-1\right)^{2}[/mm]
>  
> und die zweite ableitung davon wäre 1
>
> wenn ich jetzt T2 berechne müsste ich doch:
>  
> T2(x)= T1(x)+ f´´(x) / 2! * [mm](x-1)^2[/mm]

Nein, die Formel hat MP dir oben ausgeschrieben präsentiert.

Kompakt: [mm] $T_2(x,1)=\sum\limits_{k=0}^{2}\frac{f^{(k)}(1)}{k!}(x-1)^k$ [/mm]

Da hat dein [mm] $T_1$ [/mm] nix verloren ...

>  
> rechnen...hast du dort einfach die 1 eingesetzt?

Nein, er kann die Formeln lesen

>
> hier stimmt die zweite ableitung ja mit der
> entwicklungsstelle überein, dürfte man das auch wenn die
> entwicklungsstelle 3 wäre und die zweite ableitung 1 ?

Die Übereinstimmung $f''(1)=1$ ist rein zufällig!

Die Formel kannst du benutzen!

Gruß

schachuzipus



Bezug
                                        
Bezug
Gradient,Richtungsableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Sa 19.02.2011
Autor: schachuzipus

Toll, dass du so schön durcheinander postest und ohne was zu sagen ...

Mann Mann Mann

Albern ist das!

So kann man dir bestimmt helfen, echt ey [kopfschuettel]



schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]