matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenGraph einer gebr.-rat. Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Graph einer gebr.-rat. Fkt.
Graph einer gebr.-rat. Fkt. < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph einer gebr.-rat. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 24.05.2006
Autor: elvira

Aufgabe
Skizzieren Sie den Funktionsgraphen der Funktion f mit [mm] f(x) = \bruch {1}{x^2-9} [/mm]

Hallo Ihr,

ich bräuchte bitte Hilfe allgemeiner Art:

gibt es Kriterien für die Skizzierung gebrochenrationaler Graphen?
Nach dem Berechnen der wichtigen Punkte, Asymptoten und so kann ich diese natürlich in den Graph eintragen, aber trotzdem weiß ich nicht, woher der Graph "ins Bild" kommt, von oben in Höhe der -3 und schwirrt dann ab Richtung negativ x unendlich oder kommt von unten rauf, kratzt an der x-Achse und schwirrt dann parallel zur y-Achse in Höhe der x-Achse +3 wieder ab und solche Dinge...

Also meine konkrete Frage wär, an welcher Potenz o.ä. sehe ich, woher der Graph kommt, der dann an der Asymptote entlangschleicht? Oder gibt es hier keine Standards - so wie bei den ganzrationalen Funktionen?

Vielleicht könnt Ihr mir hier helfen, ich hab leider im worldwideweb keine Anleitung fürs Skizzieren gefunden...

Viele liebe Abendgrüße
Elvira

        
Bezug
Graph einer gebr.-rat. Fkt.: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 24.05.2006
Autor: Loddar

Hallo Elvira!


Bei Deiner speziellen Funktion bietet es sich an, den Nenner in Faktoren zu zerlegen:

$f(x) \ = \ [mm] \bruch{1}{x^2-9} [/mm] \ = \ [mm] \bruch{1}{(x+3)*(x-3)} [/mm] \ = \ [mm] \bruch{1}{(x+3)^{\blue{1}}*(x-3)^{\red{1}}}$ [/mm]


Zum einen lassen sich daran nun die beiden Polstellen bei [mm] $x_1 [/mm] \ = \ -3$ und [mm] $x_2 [/mm] \ = \ +3$ erkennen. Da beide Polstellen hier in ungerade Potenz (mit der Potenz $1_$) auftreten, liegt auch bei beiden Polstellen ein Vorzeichenwechsel vor.

Von wo nach wo (d.h. als z.B. Vorzeichenwechsel von [mm] $-\infty$ [/mm] nach [mm] $+\infty$) [/mm] lässt sich dann durch Einsetzen naheliegender Werte ermitteln.

Hilfreich für das Skizzieren ist auch in der Regel die Betrachtung für sehr große bzw. sehr kleine x-Werte (also [mm] $x\rightarrow+\infty$ [/mm] oder [mm] $x\rightarrow-\infty$). [/mm] In diesem Fall nähert sich die Funktion der x-Achse an, da gilt: [mm] $\limes_{x\rightarrow\pm\infty}f(x) [/mm] \ = \ 0$ .


Ebenso hilfreich ist es, wenn man die Symmetrie einer Kurve ausnutzen kann. Da hier gilt $f(+x) \ = \ f(-x)$ , liegt eine Achsensymmetrie zur y-Achse vor.

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Graph einer gebr.-rat. Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mi 24.05.2006
Autor: elvira

wow danke, sogar mit Zeichnung!!
werd Dich wieder mal in mein Nachtgebet einschließen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]