matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikGraph mit 6 Knoten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Diskrete Mathematik" - Graph mit 6 Knoten
Graph mit 6 Knoten < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph mit 6 Knoten: Beweis das C3 vorhanden
Status: (Frage) beantwortet Status 
Datum: 20:16 Do 23.02.2006
Autor: dump_0

Hallo.

Ich soll beweisen das für einen Graph mit 6 Knoten gilt:
Der Graph oder sein Komplementgraph enthalten ein Dreieck, also einen Kreis mit 3 Knoten.

Naja wenn ich angenommen einen Graph habe der keinen [mm] C_3 [/mm] enthält, dann gibt es mind. 3 Knoten die nicht miteinander verbunden sind (keine Ahnung wie ich das noch beweisen kann) und diese müssen demzufolge im Komplementgraph verbunden sein. Ich weiß nicht wie ich das zeigen kann und wie ich außerdem zeigen kann das es tatsächlich einen Graphen gibt der solch einen Kreis enthält.

Über Hilfe würd ich mich freuen :)

Mfg
[mm] dump_0 [/mm]

        
Bezug
Graph mit 6 Knoten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Do 23.02.2006
Autor: DaMenge

Hi,

also nehmen wir an wir haben unsere sechs Knoten A,B,C,D,E und F im Uhrzeigersinn aufgemalt.

Und unser Ziel ist es alle möglichen Kanten entweder rot oder blau zu färben, wobei "rot" für "es gibt keine Kante dazwischen" und "blau" für "es gibt eine Kante dazwischen" steht.

So wir betrachten alle Kanten die von A ausgehen - es sind 5 Stück, davon müssen nach dem Schubfachprinzip 3 geben, die die gleiche Farbe haben - oBdA sei die Farbe blau.

wir können auch oBdA annehmen, dass es die Kanten AB , AC und AD sind.
(mal klar machen, warum..)

So, jetzt betrachte doch mal die Kanten BC, CD und BD - was fällt dir auf ?

viele Grüße
DaMenge

Bezug
                
Bezug
Graph mit 6 Knoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Do 23.02.2006
Autor: dump_0

Erstmal vielen Dank für deine Antwort.

Ich denke dass diese Kanten "rot" sind.

Ich hab mir das ganze aufgezeichnet, aber wie kommst du darauf das von A 3 blaue Kanten abgehen, A also mit B,C und D verbunden ist (ich erkenne leider kein Schubfachprinzip :( ).

Grüße
[mm] dump_0 [/mm]

Bezug
                        
Bezug
Graph mit 6 Knoten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Do 23.02.2006
Autor: DaMenge

Hi,


> Ich denke dass diese Kanten "rot" sind.

richtig, und diese bilden wieder ein dreieck...

>  
> Ich hab mir das ganze aufgezeichnet, aber wie kommst du
> darauf das von A 3 blaue Kanten abgehen, A also mit B,C und
> D verbunden ist (ich erkenne leider kein Schubfachprinzip
> :( ).


also JEDE kante soll eine Farbe haben : rot oder blau
und von A gehen 5 Kanten insgesamt aus - das schubfachprinzip besagt doch , dass wenn man (k*n+1) Dinge in n Schubfächer legen will, dann hat (min) ein Schubfach (k+1) Dinge als Inhalt.

nun ist n=2 (nämlich unsere Schubfächer für rot und blau) und wir versuchen 5 Kanten daruf zu verteilen.
also muss es ein Schubfach geben, das 3 Kanten enthält oBdA das blaue..

viele Grüße
DaMenge


>  
> Grüße
>  [mm]dump_0[/mm]  


Bezug
                                
Bezug
Graph mit 6 Knoten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Fr 24.02.2006
Autor: dump_0

Ok, ich denke jetzt hab ichs verstanden, wäre aber selbst wohl nie darauf gekommen das über das Schubfachprinzip zu lösen.

Grüße
[mm] dump_0 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 10m 3. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 21h 58m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 1d 20h 41m 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 2d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 2d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]