matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieGraphen zeichnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Graphentheorie" - Graphen zeichnen
Graphen zeichnen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Di 21.01.2014
Autor: pc_doctor

Aufgabe
Zeichne auf eine maximale Anzahl von paarweise nichtisomorphen Graphen auf den Knoten {a,b,c,d}

 


Halo,

also ich habe keine Ahnung, wie ich das zeichnen soll. Wir haben erst neulich mit dem Thema angefangen. Ich weiß, wann Graphen isomorph zueinander sind.(Bijektion..)

Könnte mir jmand einen Tipp geben , wie ch das zeichnen soll ? Brauche dringend Hilfe.

Vielen Dank im Voraus.

        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 21.01.2014
Autor: felixf

Moin!

> Zeichne auf eine maximale Anzahl von paarweise
> nichtisomorphen Graphen auf den Knoten {a,b,c,d}
>  
>  
>  
> Halo,
>  
> also ich habe keine Ahnung, wie ich das zeichnen soll. Wir
> haben erst neulich mit dem Thema angefangen. Ich weiß,
> wann Graphen isomorph zueinander sind.(Bijektion..)
>  
> Könnte mir jmand einen Tipp geben , wie ch das zeichnen
> soll ? Brauche dringend Hilfe.

Gehen wir mal von ungerichteten Graphen ohne Schlaufen aus.

Dann gibt es [mm] $2^6 [/mm] = 64$ moegliche Graphen mit der Knotenmenge [mm] $\{ a, b, c, d \}$. [/mm] Du koenntest diese alle aufzeichnen -- etwa nach Anzahl Kanten sortiert -- und schauen, ob du zueinander isomorphe Paare findest. Von jedem solchen Paar streichst du einen Graph weg. Wenn du keine weiteren isomorphen Paare mehr finden kannst, hast du eine maximale Menge von paarweise nicht isomorphen Graphen uebrig.

(Da Isomorphismen die Anzahl der Kanten erhalten, musst du nur bei gleicher Kantenzahl schauen ob es einen Isomorphismus geben kann.)

LG Felix


Bezug
                
Bezug
Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Di 21.01.2014
Autor: pc_doctor

Hallo, danke für die Antwort.

Aber wieso [mm] 2^{6} [/mm] , wie kommst du drauf ?

Bezug
                        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Di 21.01.2014
Autor: Al-Chwarizmi


> Hallo, danke für die Antwort.
>  
> Aber wieso [mm]2^{6}[/mm] , wie kommst du drauf ?


Zu 4 Punkten gibt es (wenn Schlaufen verboten sind),
genau 6 mögliche Kanten (im Viereck ABCD 4 Seiten
und 2 Diagonalen).
Jeder Graph entspricht einer bestimmten Teilmenge
der Menge aller Kanten.
Eine Menge von 6 Elementen hat [mm] 2^6 [/mm] Teilmengen
(angefangen von der leeren Menge (--> Graph aus
4 isolierten Punkten) bis zur gesamten Menge
(--> vollständiges Viereck).

LG ,   Al-Chw.



Bezug
                                
Bezug
Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Di 21.01.2014
Autor: pc_doctor

Hallo,
also ich will das richtig verstehen und habe deshalb die Knoten mal gezeichnet:



Im ersten Fall sind die alle isoliert. Im zweiten Fall ist a mit b verbunden usw.

[Dateianhang nicht öffentlich]

Wenn ich jetzt isomorphe Graphen suche , dann müsste ich jetzt eigentlich analog zum 2. Bild nur c mit d verbinden oder ? Denn das wäre dann isomorph zum zweiten Bild , wo nur a mit b verbunden ist.

EDIT: Bitte beim Bild Rechtsklick und dann auf Grafik anzeigen , es ist ja recht groß. (Ich skaliere es nächstes Mal, bitte um Verzeihung)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Graphen zeichnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Di 21.01.2014
Autor: Al-Chwarizmi

Leider habe ich keinen Public-Viewing-Bildschirm !    ;-)


Benütze bitte in deinem obigen Artikel die Optionen
"reagieren" , "Meinen Artikel bearbeiten",   "Dateien hochladen und verwalten"
um die alte Grafik rauszuschmeißen und eine neue
in vernünftiger Größe (und wenn möglich auch in
richtiger Orientierung, also gedreht) hochzuladen.

LG ,   Al-Chw.

Bezug
                                                
Bezug
Graphen zeichnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Di 21.01.2014
Autor: pc_doctor

Hallo Al,

das Bild ist jetzt in verkleinerter Form verfügbar.

Bezug
                                        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Di 21.01.2014
Autor: Al-Chwarizmi


> Hallo,
>  also ich will das richtig verstehen und habe deshalb die
> Knoten mal gezeichnet:
>  
>  
> Im ersten Fall sind die alle isoliert. Im zweiten Fall ist
> a mit b verbunden usw.
>  
> [Dateianhang nicht öffentlich]
>  
> Wenn ich jetzt isomorphe Graphen suche , dann müsste ich
> jetzt eigentlich analog zum 2. Bild nur c mit d verbinden
> oder ? Denn das wäre dann isomorph zum zweiten Bild , wo
> nur a mit b verbunden ist.


Guten Abend !

..... und danke für das neue Bild !

In der Zeichnung hast du jetzt 5 zueinander nicht
isomorphe Graphen gezeigt. Das sind aber keines-
wegs schon alle möglichen, die in einer solchen
Sammlung auftreten könnten bzw. sollten.
Es gibt noch je wenigstens einen weiteren Graphen
mit genau 2, 3, 4, 5, 6 Kanten, welcher nicht zu den
schon angegebenen Graphen isomorph ist !

LG ,   Al-Chw.




Bezug
                                                
Bezug
Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 22.01.2014
Autor: pc_doctor

Hallo nochmal,
in der Tat , das waren nicht alle Möglichkeiten.

Vermute ich richtig , dass es 4! = 24 verschiedene Zeichnungen geben muss ?

Ich habe jetzt noch 15 weitere Graphen gezeichnet. Die sind doch alle NICHT isomorph. Die Knoten-und die Kantenmenge stimmen nie überein , also sind sie verschieden.

Hier das Bild:

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                                        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mi 22.01.2014
Autor: felixf

Moin!

> Hallo nochmal,
>  in der Tat , das waren nicht alle Möglichkeiten.
>  
> Vermute ich richtig , dass es 4! = 24 verschiedene
> Zeichnungen geben muss ?

Nein.

> Ich habe jetzt noch 15 weitere Graphen gezeichnet. Die sind
> doch alle NICHT isomorph. Die Knoten-und die Kantenmenge
> stimmen nie überein , also sind sie verschieden.

2, 12, 9 und 10 sind jeweils isomorph zueinander.

3, 14 und 18 ebenfalls.

Und 19 ist z.B. isomorph zu 4.

LG Felix


Bezug
                                                                
Bezug
Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 22.01.2014
Autor: pc_doctor

Hallo felix,
ach jetzt verstehe ich das.

Aber damit ist ja die Aufgabe nicht erfüllt , ich suche ja paarweise verschiedene oder nicht ? Wie kann ich nun den Bezug zur Aufgabe herstellen, wenn ich mir die Bilder angucke ?

Noch eine Frage:

Wie viele Zeichnungen fehlen noch ? Ich muss ja alle "Kombinationen" haben.

Bezug
                                                                        
Bezug
Graphen zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mi 22.01.2014
Autor: Al-Chwarizmi


> Wie viele Zeichnungen fehlen noch ? Ich muss ja alle
> "Kombinationen" haben.


Soweit ich sehe, fehlt keine. Du musst nur noch
genau darauf achten, jeden Graph nur einmal
zu bringen.
Ich sehe insgesamt nur genau 11 nicht-isomorphe
Graphen, nämlich

einen ganz ohne Kanten
einen mit einer einzigen Kante
zwei mit je 2 Kanten
drei mit 3 Kanten
zwei mit 4 Kanten
einen mit 5 Kanten
einen mit 6 Kanten

LG ,   Al-Chw.


Bezug
                                                                                
Bezug
Graphen zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 22.01.2014
Autor: pc_doctor

Hallo,

also ist die Aufgabe damit beendet. Ziel war folgendes:
"Zeichne auf eine maximale Anzahl von paarweise nichtisomorphen Graphen auf den Knoten {a,b,c,d}"
Damit habe ich also 11 verschiedene (nicht isomorphe Graphen)..


Bezug
                                                                                        
Bezug
Graphen zeichnen: Figuren
Status: (Antwort) fertig Status 
Datum: 17:21 Mi 22.01.2014
Autor: Al-Chwarizmi


> Hallo,
>  
> also ist die Aufgabe damit beendet. Ziel war folgendes:
>  "Zeichne auf eine maximale Anzahl von paarweise
> nichtisomorphen Graphen auf den Knoten {a,b,c,d}"
>  Damit habe ich also 11 verschiedene (nicht isomorphe
> Graphen)..


Ja. Ich hoffe, dass die anzahl jetzt stimmt (gerade
hatte ich noch einen Fehler korrigiert). Ich würde
dir empfehlen, die Lösungen in einer Übersichts-
zeichnung möglichst systematisch darzustellen.
Dabei würde es eigentlich genügen, anstelle der
a,b,c,d einfach fette Punkte zu setzen und dann
die entstehenden "Figuren" zu beachten:

4 isolierte Punkte
1 Paar (durch eine Kante verbunden) + 2 isolierte Punkte
2 separierte Paare
...
...
...

...
vollständiger Graph (6 Kanten)

LG ,   Al-Chw.  


Bezug
                                                                                                
Bezug
Graphen zeichnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Mi 22.01.2014
Autor: pc_doctor

Alles klar , vielen vielen Dank für deine Hilfe.


Bezug
                                                                                
Bezug
Graphen zeichnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mi 22.01.2014
Autor: felixf

Moin Al,

> > Wie viele Zeichnungen fehlen noch ? Ich muss ja alle
> > "Kombinationen" haben.
>
> Soweit ich sehe, fehlt keine. Du musst nur noch
>  genau darauf achten, jeden Graph nur einmal
>  zu bringen.
>  Ich sehe insgesamt nur genau 11 nicht-isomorphe
>  Graphen, nämlich
>  
> einen ganz ohne Kanten
>  einen mit einer einzigen Kante
>  zwei mit je 2 Kanten
>  drei mit 3 Kanten
>  zwei mit 4 Kanten
>  einen mit 5 Kanten
>  einen mit 6 Kanten

ich komme auf die gleichen Zahlen :)

Man hat hier auch eine schoene Symmetrie: es gibt genauso viele Isomorphieklassen mit $6 - k$ Kanten wie Isomorphieklassen mit $k$ Kanten. (Das gilt natuerlich auch bei groesseren oder kleineren Grundmengen, wenn man die hoechstmoegliche Kantenzahl 6 entsprechend anpasst.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 29m 3. matux MR Agent
SStoc/Münze
Status vor 31m 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status vor 5h 49m 2. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 6h 29m 8. matux MR Agent
UTopoGeo/Induzierte Topologie
Status vor 21h 11m 1. Siebenstein
Transformationen/Faltung zeichnerisch lösen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]