matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationGrenzen 3-fach Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Grenzen 3-fach Integral
Grenzen 3-fach Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzen 3-fach Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 16.05.2011
Autor: Wieselwiesel

Aufgabe
[mm] \integral{\integral{\integral{(xyz) dx} dy} dz} [/mm]
[mm] B=\{(x,y,z)\in \IR^3 | x^{2}+y^{2} \le z \le 3, x\ge 0, y\ge 0\} [/mm]

Hallo,

Ich habe hier Probleme die Grenzen zu finden. In der Angabe steht noch dabei dass man Zylinderkoordinaten verwenden soll,
das bedeutet dann für die Grenzen dass 0 [mm] \le \phi \le 2\pi, r^2 \le [/mm] z [mm] \le [/mm] 3 ist und daraus würde ich dann folgern dass 0 [mm] \le [/mm] r [mm] \le \wurzel{z} [/mm] das geht aber nicht. Kann ich anstattdesssen sagen dass 0 [mm] \le [/mm] r [mm] \le \wurzel{3} [/mm] ist? oder ist falsch? Danke schon mal im Voraus!

        
Bezug
Grenzen 3-fach Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Mo 16.05.2011
Autor: Al-Chwarizmi


> [mm]\integral{\integral{\integral{(xyz) dx} dy} dz}[/mm]
>  
> [mm]B=\{(x,y,z)\in \IR^3 | x^{2}+y^{2} \le z \le 3, x\ge 0, y\ge 0\}[/mm]
>  
> Hallo,
>  
> Ich habe hier Probleme die Grenzen zu finden. In der Angabe
> steht noch dabei dass man Zylinderkoordinaten verwenden
> soll,
>  das bedeutet dann für die Grenzen dass 0 [mm]\le \phi \le 2\pi, r^2 \le[/mm]
> z [mm]\le[/mm] 3 ist und daraus würde ich dann folgern dass 0 [mm]\le[/mm] r
> [mm]\le \wurzel{z}[/mm] das geht aber nicht. Kann ich anstattdesssen
> sagen dass 0 [mm]\le[/mm] r [mm]\le \wurzel{3}[/mm] ist? oder ist falsch?
> Danke schon mal im Voraus!


Hallo Wieselwiesel,

das Gebiet G ist ein Viertel eines oben (bei [mm] z_{max}=3) [/mm]
abgeschnittenen Rotationsparaboloïds.
Den Winkel [mm] \phi [/mm] muss man also nur von 0 bis [mm] \frac{\pi}{2} [/mm]
laufen lassen. Für ein gegebenes Paar [mm] (r,\phi) [/mm] läuft z von
[mm] r^2 [/mm] bis 3.
Der maximal mögliche Radius ist natürlich  [mm] r_{max}=\sqrt{3} [/mm]

LG   Al-Chw.


Bezug
                
Bezug
Grenzen 3-fach Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Mo 16.05.2011
Autor: Wieselwiesel

Danke für die schnelle Antwort!
Die Grenzen von r und z sind mir jetzt klar. Jetzt überraschen mich aber die Grenzen von [mm] \phi [/mm] . Wieso ist das nur ein Viertel von dem Rotationsparaboloïd? Tut mir leid falls die Frage allzu doof ist, aber ich weiss es nicht.

Bezug
                        
Bezug
Grenzen 3-fach Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Mo 16.05.2011
Autor: Al-Chwarizmi


> Danke für die schnelle Antwort!
>  Die Grenzen von r und z sind mir jetzt klar. Jetzt
> überraschen mich aber die Grenzen von [mm]\phi[/mm] . Wieso ist das
> nur ein Viertel von dem Rotationsparaboloïd? Tut mir leid
> falls die Frage allzu doof ist, aber ich weiss es nicht.


Es ist   $ [mm] B=\{\,(x,y,z)\in \IR^3\ |\ x^{2}+y^{2} \le z \le 3\ ,\ x\ge 0\ ,\ y\ge 0\,\} [/mm] $

Beachte die Ungleichungen  [mm] x\ge [/mm] 0  und   [mm] y\ge [/mm] 0  !

LG   Al-Chw.


Bezug
                                
Bezug
Grenzen 3-fach Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mo 16.05.2011
Autor: Wieselwiesel

Achso, weil wenn man den Rotationsparaboloïd von "oben" anschaut sieht man einen Kreis und die x und y Achsen als zentrales Kreuz, und da x und y [mm] \ge [/mm] 0 sind, ist das nur ein Viertel des Kreises.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]