matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Grenzwert
Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Do 01.12.2005
Autor: Sportsprinter

Hallo!

Ich hoff, dass mir mal wieder jemand bei folgender Aufgabe weiterhelfen kann, wäre echt klasse.

Beweisen Sie: Ist [mm] \limes_{n\rightarrow\infty} [/mm] a(n)=a,  [mm] \limes_{n\rightarrow\infty} [/mm] b(n)=b für unendlich viele n [mm] \in \IN [/mm] , dann gilt: a [mm] \le [/mm] b

Vielen Dank schon mal,

liebe Grüße Sportsprinter

        
Bezug
Grenzwert: Aufgabenstellung vollständig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Do 01.12.2005
Autor: Roadrunner

Hallo Sportsprinter!


Fehlt da nicht noch eine Aussage / Relation zwischen den beiden Folgen [mm] $a_n$ [/mm] und [mm] $b_n$ [/mm] ?

Denn in der Form, wie von Dir geschrieben, halte ich die Aussage für nicht beweisbar ;-) ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Grenzwert: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Do 01.12.2005
Autor: Kuebi

Hallo Ihr!

Soviel ich weiß, muss zusätzlich gelten [mm] a_{n} \le b_{n} [/mm] für unendlich viele n [mm] \in \IN. [/mm]

Viele Grüße von der Uni Stuttgart an die Uni Stuttgart! :-D

Kübi

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 Do 01.12.2005
Autor: Sportsprinter

stimmt!
Hab ich wohl total vergessen.
Klar, es muss weiterhin gelten a(n) [mm] \le [/mm] b(n)

Ich hoff, dass mir jetzt jemand weiterhelfen kann.

Bezug
        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Do 01.12.2005
Autor: SEcki


> Beweisen Sie: Ist [mm]\limes_{n\rightarrow\infty}[/mm] a(n)=a,  
> [mm]\limes_{n\rightarrow\infty}[/mm] b(n)=b für unendlich viele n
> [mm]\in \IN[/mm] , dann gilt: a [mm]\le[/mm] b

Okay, mit den Ergänzungen: Führe doch [m]a>b[/m] Zum Widerspruch. Dazu nimm dir mal ein [m]\varepsilon=\bruch{|a-b|}{3}[/m]. Was gilt jetzt für die Folgen ab bestimtmen n? Was gilt dann nicht mehr im Widerspruch zur Vorraussetzung?

Btw: Obda dürftest du annhemen, das die Eiegnschaft für alle Folgenglieder gilt - denn man kann ja durch die Bedingung zu jeweils zwei Teilfoglen übergehen, die gegen die ursprünglichen Grenzwerte konvergieren.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]