Grenzwert < Analysis < Hochschule < Mathe < Vorhilfe
|
Könnte mir vielleicht jemand mal erklären wie man den Grenzwert von
[mm] a_{n}=(1+\bruch{1}{n^{2}})^{n}
[/mm]
rausfindet.
Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:29 Fr 19.11.2004 | Autor: | Marcel |
Hallo!
> Könnte mir vielleicht jemand mal erklären wie man den
> Grenzwert von
>
> [mm]a_{n}=(1+\bruch{1}{n^{2}})^{n}
[/mm]
Folgende Umformung führt zum Ziel:
[mm]a_{n}=\left(1+\bruch{1}{n^{2}}\right)^{n}=\left(\left(1+\bruch{1}{n^{2}}\right)^{n^2}\right)^{\frac{1}{n}}[/mm]
Schau dir dazu mal an, wogegen die Folge:
[mm] $(b_n)_{n \in \IN}$ [/mm] definiert durch [mm] $b_n:=\left(1+\frac{1}{n}\right)^n$ [/mm] konvergiert (es ist eine ganz bekannte Zahl . Wichtig ist aber nur, dass diese Zahl $>0$ ist. (Wie du gleich sehen wirst, ist das nicht notwendig, sondern uns genügt, dass wir feststellen, dass die Folgeglieder ab einem gewissen Index immer zwischen zwei echt positiven Zahlen liegen.)).
Dann überlege dir, dass die Teilfolge [mm] $(b_{n(k)})_{k \in \IN}$ [/mm] von [mm] $(b_n)_{n \in \IN}$, [/mm] wobei [mm] $n(k):=k^2$, [/mm] auch gegen diesen Grenzwert konvergieren muss.
Da $2 [mm] \le b_n \le [/mm] 3$ [mm] $\forall [/mm] n [mm] \in \IN$, [/mm] folgt dann weiter:
$2 [mm] \le b_{n(k)} \le [/mm] 3$ [mm] $\forall [/mm] k [mm] \in \IN$
[/mm]
Damit bekommst du dann eine Abschätzung:
$2 [mm] \le b_{n(k)}=(a_k)^k \le [/mm] 3$ [mm] $\forall [/mm] k [mm] \in \IN$
[/mm]
[mm] $\Rightarrow$
[/mm]
[mm] $(\star)$ $\wurzel[k]{2} \le a_k \le \wurzel[k]{3}$ $\forall [/mm] k [mm] \in \IN$
[/mm]
Dann beachte, dass für alle $x [mm] \in \IR$ [/mm] mit $x>0$ gilt:
[mm] $\limes_{n \to \infty}{\wurzel[n]{x}}=1$ [/mm] (Kennst du einen Beweis dazu?).
Wendest du letzteres nun auf [mm] $(\star)$ [/mm] an, so erhältst du mit dem Einschließungskriterium:
[mm] $a_k \to [/mm] 1$ $(k [mm] \to \infty)$.
[/mm]
Viele Grüße,
Marcel
|
|
|
|