matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Kurvendiskusion
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 24.11.2008
Autor: svena

Aufgabe
Grenzwert

Also...Meine frage ist...
Kann mir jemand das mit dem lim f(x) gegen + oder - unendlich erklären??? aber bitte auf eine art wo ich es auch verstehen kann... Ich komme damit so rein gar nicht klar....:(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mo 24.11.2008
Autor: Philipp91

Hi Svenja,
mit [mm] \limes_{x\rightarrow\infty} [/mm] von f(x) bekommt man Auskunft über das Verhalten der Y-Werte  für sehr große x.

Ich will es dir versuchen zu erklären anhand von ein paar Beispielen.

1.  f(x) = 2*x   [mm] \limes_{x\rightarrow\infty} [/mm] von f(x) = 2 * [mm] \infty [/mm] = [mm] \infty [/mm]

Also die Funktion wächst immer weiter für größere X-Werte.
Und wenn man immer kleinere X-Werte verwendet, werden auch die Y-Werte kleiner.  Diese Funktion hat also keinen Grenzwert.

2. f(x) = 2/x     [mm] \limes_{x\rightarrow\infty} [/mm] von f(x) = 2 / [mm] \infty [/mm] = [mm] \infty [/mm]

Diese Funktion nähert sich immer mehr dem Y-Wert  0 an, da die 2 durch immere Größere Zahlen geteilt wird

3. f(x) = (2*x + 7) / (3*x + 6)  [mm] \limes_{x\rightarrow\infty} [/mm] von f(x) =
[mm] \limes_{x\rightarrow\infty} [/mm] (x ( 2 + 7/x))/(x ( 3 + 6/x)) = 2+0 / 3+0
Hier wird das x ausgeklammert und dann weggekürzt um den Grenzwert zu ermitteln.
Dabei entsteht der Ausdruck  (2+ 7/x) / (3 * 6/x)  
7/x und 6/x werden wieder durch immer größere Zahlen geteilt und haben somit den Grenzwert 0 und  2  und 3 sind ihr eigener Grenzwert, somit hat die ganze Funktion den Grenzwert 2/3

Ich hoffe das dir das geholfen hat
Wenn du noch Fragen hast, einfach schreiben

MFG Philipp

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mo 24.11.2008
Autor: fred97


> Hi Svenja,
>  mit [mm]\limes_{x\rightarrow\infty}[/mm] von f(x) bekommt man
> Auskunft über das Verhalten der Y-Werte  für sehr große x.
>  
> Ich will es dir versuchen zu erklären anhand von ein paar
> Beispielen.
>  
> 1.  f(x) = 2*x   [mm]\limes_{x\rightarrow\infty}[/mm] von f(x) = 2 *
> [mm]\infty[/mm] = [mm]\infty[/mm]
>  
> Also die Funktion wächst immer weiter für größere X-Werte.
>  Und wenn man immer kleinere X-Werte verwendet, werden auch
> die Y-Werte kleiner.  Diese Funktion hat also keinen
> Grenzwert.
>  
> 2. f(x) = 2/x     [mm]\limes_{x\rightarrow\infty}[/mm] von f(x) = 2
> / [mm]\infty[/mm] = [mm]\infty[/mm]

Hier hast Du Dich wohl verschrieben. Der Grenzwert ist = 0.

FRED


>  
> Diese Funktion nähert sich immer mehr dem Y-Wert  0 an, da
> die 2 durch immere Größere Zahlen geteilt wird
>  
> 3. f(x) = (2*x + 7) / (3*x + 6)  
> [mm]\limes_{x\rightarrow\infty}[/mm] von f(x) =
> [mm]\limes_{x\rightarrow\infty}[/mm] (x ( 2 + 7/x))/(x ( 3 + 6/x)) =
> 2+0 / 3+0
>  Hier wird das x ausgeklammert um den Grenzwert zu
> ermitteln.
>  Dabei entsteht der Ausdruck  (2+ 7/x) / (3 * 6/x)  
> 7/x und 6/x werden wieder durch immer größere Zahlen
> geteilt und haben somit den Grenzwert 0 und  2  und 3 sind
> ihr eigener Grenzwert, somit hat die ganze Funktion den
> Grenzwert 2/3
>  
> Ich hoffe das dir das geholfen hat
>  Wenn du noch Fragen hast, einfach schreiben
>  
> MFG Philipp


Bezug
                        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Di 25.11.2008
Autor: Philipp91

ja stimmt, da haben sie natürlich recht. Hab mir verschrieben, ist natürlich eine Nullfolge.In der Erklärung hab ich es aber richtig geschrieben

MFG Philipp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]