matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzwert
Grenzwert < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Di 10.02.2009
Autor: Esperanza

Aufgabe
Ich soll die beiden iterierten Grenzwerte für die Stelle (0,0) errechnen.

[mm] z=\bruch{x^2-2x+3y}{x+y} [/mm]

Erstmal weiß ich nicht was ein "iterierter" Grenzwert ist. Ich hab gegoogelt wie wild ich find es nicht. Ist das sowas wie links- und rechtseitiger GW???

Den Punkt (0,0) muss ich untersuchen weil man ja nicht durch 0 teilen darf.
Aber wie?? Ich find keinen Anfang. Ich weiß das es nicht so schwer ist aber trotzdem. Muss ich jetzt partiell ableiten??

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Di 10.02.2009
Autor: Marcel

Hallo,

> Ich soll die beiden iterierten Grenzwerte für die Stelle
> (0,0) errechnen.
>  
> [mm]z=\bruch{x^2-2x+3y}{x+y}[/mm]
>  Erstmal weiß ich nicht was ein "iterierter" Grenzwert ist.
> Ich hab gegoogelt wie wild ich find es nicht. Ist das sowas
> wie links- und rechtseitiger GW???

nein, damit ist gemeint, Du sollst für [mm] $f(x,y):=\bruch{x^2-2x+3y}{x+y}$ [/mm] untersuchen, wie es mit
[mm] $$\lim_{x \to 0} \lim_{y \to 0} [/mm] f(x,y)$$
und
[mm] $$\lim_{y \to 0} \lim_{x \to 0} [/mm] f(x,y)$$
  
aussieht. (Beim der ersten Grenzwertbetrachtung läßt man zuerst $y [mm] \to [/mm] 0$ laufen, und danach $x [mm] \to [/mm] 0$. Bei der zweiten läßt man zunächst $x [mm] \to [/mm] 0$ und danach $y [mm] \to [/mm] 0$ laufen.)

> Den Punkt (0,0) muss ich untersuchen weil man ja nicht
> durch 0 teilen darf.

Von müssen kann da keine Rede sein. Aber der Punkt ist natürlich interessant, andere wären vll. langweiliger (wobei hier vll. auch Punkte [mm] $(x,\,y)=(x,\,-x)$ [/mm] interessant sein könnten).

>  Aber wie?? Ich find keinen Anfang. Ich weiß das es nicht
> so schwer ist aber trotzdem. Muss ich jetzt partiell
> ableiten??

Was Du machen musst, steht oben.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]