matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 So 31.01.2010
Autor: DrNetwork

Aufgabe
[mm] \limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2} [/mm]

Nun ja ich hab Probleme beim ausrechnen von diesem Grenzwert es wird am Ende recht kompliziert wo ich mich frage ob das wirklich so funktioniert oder ob man das nicht geschickt umformen kann über einen Tipp würd ich mich sehr freuen:

1. Ansatz
[mm] \limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2} [/mm] = [mm] \limes_{n\rightarrow\infty} \left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)^{n^2} [/mm] = [mm] \limes_{n\rightarrow\infty} e^{n^2ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)} \Rightarrow \limes_{n\rightarrow\infty} {n^2ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)} [/mm] = [mm] \frac{ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)}{\frac{1}{n^2}} [/mm] ... l'H. macht den Ausdruck recht kompliziert

2.Ansatz

[mm] \limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2} [/mm] = [mm] \limes_{n\rightarrow\infty} \left(1+\frac{2}{n^2-1}\right)^{n^2} [/mm] = [mm] \limes_{n\rightarrow\infty} e^{n^2ln\left(1+\frac{2}{n^2-1}\right)} \Rightarrow \limes_{n\rightarrow\infty} {n^2ln\left(1+\frac{2}{n^2-1}\right)} [/mm] = [mm] \frac{ln\left(1+\frac{2}{n^2-1}\right)}{\frac{1}{n^2}} [/mm] ...

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 So 31.01.2010
Autor: schachuzipus

Hallo DrNetwork,

> [mm]\limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2}[/mm]
>  
> Nun ja ich hab Probleme beim ausrechnen von diesem
> Grenzwert es wird am Ende recht kompliziert wo ich mich
> frage ob das wirklich so funktioniert oder ob man das nicht
> geschickt umformen kann über einen Tipp würd ich mich
> sehr freuen:
>  
> 1. Ansatz
>  [mm]\limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2}[/mm]
> = [mm]\limes_{n\rightarrow\infty} \left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)^{n^2}[/mm]
> = [mm]\limes_{n\rightarrow\infty} e^{n^2ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)} \Rightarrow \limes_{n\rightarrow\infty} {n^2ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)}[/mm]
> =
> [mm]\frac{ln\left(\frac{1+\frac{1}{n^2}}{1-\frac{1}{n^2}}\right)}{\frac{1}{n^2}}[/mm]
> ... l'H. macht den Ausdruck recht kompliziert
>  
> 2.Ansatz
>  
> [mm]\limes_{n\rightarrow\infty} \left(\frac{n^2+1}{n^2-1}\right)^{n^2}[/mm]
> = [mm]\limes_{n\rightarrow\infty} \left(1+\frac{2}{n^2-1}\right)^{n^2}[/mm]
> = [mm]\limes_{n\rightarrow\infty} e^{n^2ln\left(1+\frac{2}{n^2-1}\right)} \Rightarrow \limes_{n\rightarrow\infty} {n^2ln\left(1+\frac{2}{n^2-1}\right)}[/mm]
> = [mm]\frac{ln\left(1+\frac{2}{n^2-1}\right)}{\frac{1}{n^2}}[/mm]
> ...

Der 2.Ansatz ist der m.E. bessere (auch im Sinne von wenig aufwendig...)

Aber das Umschreiben der Potenz mit der e-Funktion ist völlig unnötig.

Nach deinem Ansatz ist (richtig) [mm] $\left(1+\frac{2}{n^2-1}\right)^{n^2}$ [/mm]

Nun nutze die Potenzgesetze, um den Exponenten auch auf [mm] $n^2-1$ [/mm] zu bringen:

[mm] $=\left(1+\frac{2}{n^2-1}\right)^{n^2-1}\cdot{}\left(1+\frac{2}{n^2-1}\right)^1$ [/mm]

Bedenke, dass mit [mm] $n\to\infty$ [/mm] auch [mm] $n^2-1\to\infty$ [/mm] geht

Nun kannst du die Grenzwertsätze benutzen, den GW des ersten Faktors kennst du, den des zweiten auch.

Gruß

schachuzipus

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 So 31.01.2010
Autor: DrNetwork


> Nach deinem Ansatz ist (richtig)
> [mm]\left(1+\frac{2}{n^2-1}\right)^{n^2}[/mm]
>  
> Nun nutze die Potenzgesetze, um den Exponenten auch auf
> [mm]n^2-1[/mm] zu bringen:
>  
> [mm]=\left(1+\frac{2}{n^2-1}\right)^{n^2-1}\cdot{}\left(1+\frac{2}{n^2-1}\right)^1[/mm]
>  
> Bedenke, dass mit [mm]n\to\infty[/mm] auch [mm]n^2-1\to\infty[/mm] geht
>  
> Nun kannst du die Grenzwertsätze benutzen, den GW des
> ersten Faktors kennst du, den des zweiten auch.

Hm, leider nein. Ich kann mir aber vorstellen das, das irgendwas mit [mm] \limes_{n\rightarrow\infty} \left(1+\frac{1}{n}\right)^n [/mm] = e zu tun hat.

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 31.01.2010
Autor: schachuzipus

Hallo nochmal,

> > Nach deinem Ansatz ist (richtig)
> > [mm]\left(1+\frac{2}{n^2-1}\right)^{n^2}[/mm]
>  >  
> > Nun nutze die Potenzgesetze, um den Exponenten auch auf
> > [mm]n^2-1[/mm] zu bringen:
>  >  
> >
> [mm]=\left(1+\frac{2}{n^2-1}\right)^{n^2-1}\cdot{}\left(1+\frac{2}{n^2-1}\right)^1[/mm]
>  >  
> > Bedenke, dass mit [mm]n\to\infty[/mm] auch [mm]n^2-1\to\infty[/mm] geht
>  >  
> > Nun kannst du die Grenzwertsätze benutzen, den GW des
> > ersten Faktors kennst du, den des zweiten auch.
>  
> Hm, leider nein. Ich kann mir aber vorstellen das, das
> irgendwas mit [mm]\limes_{n\rightarrow\infty} \left(1+\frac{1}{n}\right)^n[/mm]  = e zu tun hat.

Das hat es in der Tat, ich nenne mal dein n lieber k:

Es ist [mm] $\lim\limits_{k\to\infty}\left(1+\frac{\red{1}}{k}\right)^k=e^{\red{1}}$ [/mm]

Und entsprechend [mm] $\lim\limits_{k\to\infty}\left(1+\frac{\red{x}}{k}\right)^k=e^{\red{x}}$ [/mm]

Nun substituiere [mm] $k:=n^2-1$, [/mm] dann geht mit [mm] $k\to\infty$ [/mm] auch [mm] $n^2-1\to\infty$ [/mm] und [mm] $n\to\infty$ [/mm]

Also [mm] $\lim\limits_{n\to\infty}\left(1+\frac{2}{n^2-1}\right)^{n^2-1}=e^{2}$ [/mm]


Gruß

schachuzipus

Bezug
                                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 So 31.01.2010
Autor: DrNetwork


> Und entsprechend
> [mm]\lim\limits_{k\to\infty}\left(1+\frac{\red{x}}{k}\right)^k=e^{\red{x}}[/mm]
>  
> Nun substituiere [mm]k:=n^2-1[/mm], dann geht mit [mm]k\to\infty[/mm] auch
> [mm]n^2-1\to\infty[/mm] und [mm]n\to\infty[/mm]

Aaah, danke das ist mir neu. :) Substituieren ist in der Regel auch kein Problem?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]