Grenzwert - Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 04:49 Mo 27.09.2010 | Autor: | mbohrer |
Aufgabe | Gegeben ist die Folge [mm] \left ( a_n \right) [/mm] die durch [mm] a_{n+1} = \bruch {1}{2} \left (a_n + a_{n-1} \right) [/mm] definiert wird.
Zeigen Sie dass, [mm] \lim_{n\ to\ infty}a_n = \bruch {1}{3} \left (a_1 + 2a_2 \right) [/mm].
Gegeben ist 0 < [mm] a_1 [/mm] < [mm] a_2 [/mm]. |
Hallo!
Ich habe schon gezeigt dass, die [mm] a_{2k-1} [/mm] monoton wachsen sind und die [mm] a_{2k} [/mm] sinken.
Leicht kann man auch sehen dass, [mm] a_{2k} [/mm] > [mm] a_{2k-1} [/mm]. Beide sind begrenzt. Daraus kriegt man Sup [mm] a_{2k-1} [/mm] = Inf [mm] a_{2k} [/mm].
Also [mm] \left (a_n \right) [/mm] konvergiert.
Weiter kann ich leider nicht. Wie kann man dieses Limit berechenen?
Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:55 Mo 27.09.2010 | Autor: | leduart |
Hallo
du hast ne Art Intervallschachtelung innerhalb des Intervalls [a1,a2], also kannst du a1=0 und a2=1 waehlen
dann zeichne es dir auf, du hast die Folge 1/2, 1/2+1/4, 1/2+1/4-1/8=1/2+1/8, 1/2+1/8+1/16-1/32=1/2+1/8+1/32, dann +1/128 usw. also ne geometrische Reihe.
das Intervall verschieben oder (und) vergroessern sollte dann leicht sein.
Gruss leduart
|
|
|
|