matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert, Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Grenzwert, Konvergenz
Grenzwert, Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert, Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Do 28.02.2008
Autor: koko

hallo leute...

hätte da eine frage zu einem folgenbeispiel,welches we folgt lautet:

Ich hab die folge [mm] a_n=\left( \bruch{1+2+3+...n}{n} \right)^{1/n} [/mm]

ich soll den grenzwert berchenen und prüfen ob diese folge konvergiert ode nicht.

ich hab mir das so gedacht, wenn die folge beschränkt ist, also einen grenzwert besitzt und monton fallen oder steigend ist, dann folgt daruas die konvergenz??? richtig???


und beim berchnen des grnzwertes komm ich auf 1, nämlich indem ich krieg [mm] a_n=\left( \bruch{n+1}{2} \right)^{1/n} [/mm]

und das ist ja nicht anderes als [mm] \wurzel{1/2}*\wurzel{n+1} [/mm]

was für n--> [mm] \infty [/mm] beides gegn 1 geht, also grenzwert 1.

aber wie zeig ich dass sie monoton ist....???

oder hab ich da irgendwo einen falschen ansatzt gemacht???

kann mir da jemand behilflich sein.

danke im voraus

mfg koko


        
Bezug
Grenzwert, Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Do 28.02.2008
Autor: Kroni

Hi,

> hallo leute...
>  
> hätte da eine frage zu einem folgenbeispiel,welches we
> folgt lautet:
>  
> Ich hab die folge [mm]a_n=\left( \bruch{1+2+3+...n}{n} \right)^{1/n}[/mm]
>  
> ich soll den grenzwert berchenen und prüfen ob diese folge
> konvergiert ode nicht.

Wenn ein Grenzwert exisitiert, dann konvergiert sie doch.

>  
> ich hab mir das so gedacht, wenn die folge beschränkt ist,
> also einen grenzwert besitzt und monton fallen oder
> steigend ist, dann folgt daruas die konvergenz???
> richtig???

Es heißt doch: Falls nach oben beschränkt und monoton steigend, dann ist die Folge konvergert.
Und "Wenn nach unten beschränkt und monoton fallend, dann ist die Folge konvergent".
Also ist deine Variante in etwa richtig.

>  
>
> und beim berchnen des grnzwertes komm ich auf 1, nämlich
> indem ich krieg [mm]a_n=\left( \bruch{n+1}{2} \right)^{1/n}[/mm]

Ja. Du hast die Summenformel eingesetzt und dann das n gekürzt.

>  
> und das ist ja nicht anderes als [mm]\wurzel{1/2}*\wurzel{n+1}[/mm]

Nein. Das stimmt nicht. Das ist gleich [mm] $\sqrt[n]{1/2}*sqrt[n]{n+1}$ [/mm]

Erst jetzt kannst du den Limesübergang machen.

>  
> was für n--> [mm]\infty[/mm] beides gegn 1 geht, also grenzwert 1.

Richtig.

>  
> aber wie zeig ich dass sie monoton ist....???

Das brauchst du m.E. nicht mehr, weil der Grenzwert ja offensichtilch exisitiert, also ist deine Folge konvergent.
Monotonie zeigt man aber so: Wenn [mm] a_n [/mm] und [mm] a_{n+1} [/mm] zwei Folgenglieder sind, und die Folge ist monoton steigend, dann weist du, dass [mm] $a_{n+1}\ge a_{n}$ [/mm] Daraus kannst du folgern, dass [mm] $\frac{a_{n+1}}{a_n}\ge1$ [/mm] sein muss.

Damit du aber die Beschränktheit zeigen kannst, musst du zeigen, dass deine Folge immer unter einem Wert bleibt, also wenn dus richtig machen willst mit [mm] \epsilon [/mm] etc....
Aber bei uns hats immer gereicht: Das Teil hat den Grenzewrt 1, also konvergiert es auch..

>  
> oder hab ich da irgendwo einen falschen ansatzt gemacht???

Nein, der Ansatz war super.

>  
> kann mir da jemand behilflich sein.
>  
> danke im voraus
>  
> mfg koko
>  


LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]