matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisGrenzwert L’Hospital
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Grenzwert L’Hospital
Grenzwert L’Hospital < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert L’Hospital: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 18.01.2012
Autor: Ciotic

Aufgabe
Berechnen Sie die Grenzwerte mit Hilfe der Regel von de  L’Hospital.

d) [mm] \limes_{x\rightarrow 0} $(1+sin(x))^{1/x}$ [/mm]

Hallo,

ich würde gerne wissen, wie man die Regel von de L'Hospital auf dieses Beispiel anwendet. Bei Brüchen ist mir die Vorgehensweise klar, wie gehe ich hier vor?

Danke !

        
Bezug
Grenzwert L’Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 18.01.2012
Autor: MathePower

Hallo Ciotic,

> Berechnen Sie die Grenzwerte mit Hilfe der Regel von de  
> L’Hospital.
>  
> d) [mm]\limes_{x\rightarrow 0}[/mm]  [mm](1+sin(x))^{1/x}[/mm]
>  Hallo,
>  


Schreibe zunächst den zu untersuchenden Ausdruck um:

[mm](1+sin(x))^{1/x}=e^{\ln\left(1+\sin\left(x\right)\right)*\bruch{1}{x}[/mm]

Damit ist

[mm]\limes_{x \to 0}{\bruch{\ln\left( \ 1+\sin\left(x\right) \ \right)}{x}}[/mm]

zu bilden.


> ich würde gerne wissen, wie man die Regel von de
> L'Hospital auf dieses Beispiel anwendet. Bei Brüchen ist
> mir die Vorgehensweise klar, wie gehe ich hier vor?
>  
> Danke !


Gruss
MathePower

Bezug
                
Bezug
Grenzwert L’Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Mi 18.01.2012
Autor: Ciotic

Danke, das hat mir sehr geholfen.

Dann komme ich auf :

[mm] $\bruch [/mm] {cos(x)}{1+sin(x)} = [mm] \bruch [/mm] {1}{1}$

Nun sollte aber als Lösung e rauskommen, wie komme ich darauf?



Bezug
                        
Bezug
Grenzwert L’Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Mi 18.01.2012
Autor: ullim

Hi,

Du hast ja den Grenzwert des Exponenten gebildet und hast 1 heraus bekommen. Also gilt für den Grenzwert des ursprünglichen Ausdrucks das e herauskommt.

Bezug
                                
Bezug
Grenzwert L’Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Mi 18.01.2012
Autor: Ciotic

Alles klar, vielen Dank ! Dann noch eine zweite Teilaufgabe:

[mm] \limes_{x\rightarrow\infty} $(x^3+2x)^\bruch [/mm] {1}{x}$



Habe dort auch alles umgeformt und bin schlussendlich auf $ [mm] \bruch {6x}{3x^2+2} [/mm] $->$ [mm] \bruch [/mm] {6}{6x}$ gekommen. Nach der Grafik der Funktion sollte allerdings 1 die Lösung sein. Wer kann helfen ?

Bezug
                                        
Bezug
Grenzwert L’Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mi 18.01.2012
Autor: MathePower

Hallo Ciotic,

> Alles klar, vielen Dank ! Dann noch eine zweite
> Teilaufgabe:
>  
> [mm]\limes_{x\rightarrow\infty}[/mm]  [mm](x^3+2x)^\bruch {1}{x}[/mm]
>  
>
>
> Habe dort auch alles umgeformt und bin schlussendlich auf
> [mm]\bruch {6x}{3x^2+2} [/mm]->[mm] \bruch {6}{6x}[/mm] gekommen. Nach der
> Grafik der Funktion sollte allerdings 1 die Lösung sein.
> Wer kann helfen ?


Bedenke, daß der Grenzwert

[mm]e^{\limes_{x \to \infty}\bruch{6}{6x}}[/mm]

ist.


Gruss
MathePower

Bezug
                                                
Bezug
Grenzwert L’Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Mi 18.01.2012
Autor: Ciotic

Hmm, ich stehe auf dem Schlauch.

Irgendwie irritiert mich das x noch. Kannst du mir das vielleicht nochmal erklären? Danke !

Bezug
                                                        
Bezug
Grenzwert L’Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Mi 18.01.2012
Autor: Ciotic

Sorry, hatte versehentlich eine Mitteilung gemacht. Hier nochmal:

Hmm, ich stehe auf dem Schlauch.

Irgendwie irritiert mich das x noch. Kannst du mir das vielleicht nochmal erklären? Danke !

Bezug
                                                                
Bezug
Grenzwert L’Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mi 18.01.2012
Autor: MathePower

Hallo Ciotic,

> Sorry, hatte versehentlich eine Mitteilung gemacht. Hier
> nochmal:
>  
> Hmm, ich stehe auf dem Schlauch.
>
> Irgendwie irritiert mich das x noch. Kannst du mir das
> vielleicht nochmal erklären? Danke !


Siehe hier


Gruss
MathePower

Bezug
                                                        
Bezug
Grenzwert L’Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 18.01.2012
Autor: MathePower

Hallo Ciotic,

> Hmm, ich stehe auf dem Schlauch.
>
> Irgendwie irritiert mich das x noch. Kannst du mir das
> vielleicht nochmal erklären? Danke !


Es ist doch

[mm]\limes_{x\to \infty}{ \bruch{6}{6x}}=0[/mm]

Dann ist [mm]e^{0}=1=\limes_{x \to \infty}e^{\bruch{\ln\left(x^{3}+2*x\right)}{x}}=\limes_{x \to \infty} {(x^3+2x)^\bruch {1}{x} }[/mm]

Gruss
MathePower

Bezug
                                                                
Bezug
Grenzwert L’Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Mi 18.01.2012
Autor: Ciotic

Danke, der Groschen ist jetzt gefallen.

Du bist richtig gut ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]