matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwert berrechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Grenzwert berrechnen
Grenzwert berrechnen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berrechnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:59 Do 27.10.2005
Autor: sternchen19.8

Einen wunderschönen guten Abend alle Mathefreaks...:-)
Meine Aufgabe lautet:
Betrachtet werde eine differenzierbare Funktion f: (0,1] -->  [mm] \IR. [/mm] Für die gelte, dass  | f'(x)| < 1 für alle x [mm] \in [/mm] (0,1]. Zeige, dass die Folge  (f([mm] \bruch{1}{n}[/mm])) [mm] n \in \IN [/mm]einen Grenzwert besitzt.
Da ich leider nicht zu den Mathefreaks gehöre, weiß ich nicht genau, was ich machen soll.
P.S. Mathefreaks ist nicht böse gemeint, ich würd gern selber dazu gehören, da mir Mathe mal echt Spaß gemacht hat. :-)))

        
Bezug
Grenzwert berrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Do 27.10.2005
Autor: SEcki


>  Da ich leider nicht zu den Mathefreaks gehöre, weiß ich
> nicht genau, was ich machen soll.

Zeigen, dass diese Folge konvergeirt - was ist daran unklar? Die Definition? Einen Ansatz hier oder wie? Als Ansatz: zeige, das diese Folge eine Cauchy-Folge, dazu sieh dir mal den Mittelwertsatz an. Was folt denn nun?

SEcki

Bezug
        
Bezug
Grenzwert berrechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 31.10.2005
Autor: sternchen19.8

Kannst du mir vielleicht nochmal dabei helfen, wie ich zeigen kann, dass es sich um eine Cauchy-Folge handelt?

Bezug
                
Bezug
Grenzwert berrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Mo 31.10.2005
Autor: Stefan

Hallo!

Mit dem Schrankensatz (einer Folgerung aus dem Mittelwertsatz) folgt für vorgegebenes [mm] $\varepsilon>0$ [/mm] und alle $n,m [mm] \ge N_0 \ge \frac{1}{\varepsilon}$: [/mm]

[mm] $\left| f\left( \frac{1}{n} \right) - f \left( \frac{1}{m} \right) \right| \le \sup\limits_{x \in (0,1]} |f'(\xi)| \cdot \left| \frac{1}{n} - \frac{1}{m} \right| \le \left| \frac{1}{n} - \frac{1}{m} \right| \le \max \left\{ \frac{1}{n}, \frac{1}{m} \right\} \le \frac{1}{N_0} \le \varepsilon$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]